5′-ADP-3″Deoxypentos-2″-Ulose. A Novel Product of ADP-Ribosyl Protein Lyase

  • Kunihiro Ueda
  • Osamu Hayaishi
  • Jun Oka
  • Hajime Komura
  • Koji Nakanishi
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Our previous studies [1, 2] revealed that the degradation of poly(ADP-ribosyl) proteins is carried out by consecutive actions of two enzymes, poly(ADP-ribose) glycohydrolase [3, 4] and ADP-ribosyl protein lyase (formerly termed ADP-ribosyl histone splitting enzyme) [5] (Fig. 1). The latter enzyme catalyzes removal of the last proximal ADP-ribosyl residue from acceptor protein. This report presents, after a brief review of ADP-ribosyl histones and the lyase, the identification of the enzymatic split product as a novel sugar derivative, and discusses its significance in poly(ADP-ribosyl) protein metabolism.


Adenosine Carboxylate Adduct Arginine Deuterium 



Fourier Transformed Infrared Spectrogram


Gas Chromatography/Mass Spectrometry


High Performance Liquid Chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ueda K, Kawaichi M, Oka J, Hayaishi O (1980) Biosynthesis and degradation of poly(ADP-ribosyl) histones. In: Smulson M, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier/North Holland, Amsterdam New York, pp 47–56Google Scholar
  2. 2.
    Ueda K, Ogata N, Kawaichi M, Inada S, Hayaishi O (1982) ADP-ribosylation reactions. Cur Top Cell Regul 21:175–187Google Scholar
  3. 3.
    Ueda K, Oka J, Narumiya S, Miyakawa N, Hayaishi O (1972) Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun 46:516–523PubMedCrossRefGoogle Scholar
  4. 4.
    Miwa M, Tanaka M, Matsushima T, Sugimura T (1974) Purification and properties of a glycohydrolase from calf thymus splitting ribose-ribose linkages of poly(adenosine diphosphate ribose). J Biol Chem 249:3475–3482PubMedGoogle Scholar
  5. 5.
    Okayama H, Honda M, Hayaishi O (1978) Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage. Proc Natl Acad Sci USA 75:2254–2257PubMedCrossRefGoogle Scholar
  6. 6.
    Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:71–99CrossRefGoogle Scholar
  7. 7.
    Riquelme PT, Burzio LO, Koide SS (1979) ADP ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem 254:3018–3028PubMedGoogle Scholar
  8. 8.
    Ogata N, Ueda K, Hayaishi O (1980) ADP-ribosylation sites of histones H1 and H2B. In: Smulson M, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier/North Holland, Amsterdam New York, pp 333–342Google Scholar
  9. 9.
    Ogata N, Ueda K, Kagamiyama H, Hayaishi O (1980) ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14 and COOH-terminal lysine residue as modification sites. J Biol Chem 255:7616–7620PubMedGoogle Scholar
  10. 10.
    Burzio LO, Riquelme PT, Koide SS (1979) ADP ribosylation of rat liver nucleosomal core histories. J Biol Chem 254:3029–3037PubMedGoogle Scholar
  11. 11.
    Ogata K, Ueda K, Hayaishi O (1980) ADP-ribosylation of historie H2B. Identification of glutamic acid residue 2 as the modification site. J Biol Chem 255:7610–7615PubMedGoogle Scholar
  12. 12.
    Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K (1984) ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J Biol Chem 259:986–995PubMedGoogle Scholar
  13. 13.
    Kun E, Chang ACY, Sharma ML, Ferro AM, Nitecki D (1976) Covalent modification of proteins by metabolites of NAD. Proc Natl Acad Sci USA 73:3131–3135PubMedCrossRefGoogle Scholar
  14. 14.
    Moss J, Vaughan M (1978) Isolation of an avian erythrocyte protein possessing ADP-ribosyl-transferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75:3621–3624PubMedCrossRefGoogle Scholar
  15. 15.
    Komura H, Iwashita T, Naoki H, Nakanishi K, Oka J, Ueda K, Hayaishi O (1983) Structure and synthesis of 3-deoxy-D-glycero-pentos-2-ulose, an unusual sugar produced enzymatically from (ADP-ribosyl)histone H2B. J Am Chem Soc 105:5164–5165CrossRefGoogle Scholar
  16. 16.
    Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H (1982) DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J Biol Chem 257:12872–12877PubMedGoogle Scholar
  17. 17.
    Williams JC, Chambers JP, Liehr JG (1984) Glutamyl ribose 5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosylated) proteins. J Biol Chem 259: 1037–1042PubMedGoogle Scholar
  18. 18.
    Williams JC, Butler IJ, Rosenberg HS, Verani R, Scott CI, Conley SB (1984) Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate. N Engl J Med 311:152–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Kunihiro Ueda
    • 1
  • Osamu Hayaishi
    • 2
  • Jun Oka
    • 3
  • Hajime Komura
    • 4
  • Koji Nakanishi
    • 4
  1. 1.Department of Medical ChemistryKyoto University Faculty of MedicineSakyo-ku, Kyoto 606Japan
  2. 2.Osaka Medical CollegeTakatsuki, Osaka 569Japan
  3. 3.The National Institute of NutritionShinjuku-ku, Tokyo 162Japan
  4. 4.Suntory Institute for Bioorganic ResearchShimamoto-cho, Mishima-gun, Osaka 618Japan

Personalised recommendations