Advertisement

5′-ADP-3″Deoxypentos-2″-Ulose. A Novel Product of ADP-Ribosyl Protein Lyase

  • Kunihiro Ueda
  • Osamu Hayaishi
  • Jun Oka
  • Hajime Komura
  • Koji Nakanishi
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Our previous studies [1, 2] revealed that the degradation of poly(ADP-ribosyl) proteins is carried out by consecutive actions of two enzymes, poly(ADP-ribose) glycohydrolase [3, 4] and ADP-ribosyl protein lyase (formerly termed ADP-ribosyl histone splitting enzyme) [5] (Fig. 1). The latter enzyme catalyzes removal of the last proximal ADP-ribosyl residue from acceptor protein. This report presents, after a brief review of ADP-ribosyl histones and the lyase, the identification of the enzymatic split product as a novel sugar derivative, and discusses its significance in poly(ADP-ribosyl) protein metabolism.

Keywords

Lysosomal Storage Disease Histone Linkage Phospho Ribosyl Glutamic Acid Residue Split Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

FT-IR

Fourier Transformed Infrared Spectrogram

GC/MS

Gas Chromatography/Mass Spectrometry

HPLC

High Performance Liquid Chromatography

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ueda K, Kawaichi M, Oka J, Hayaishi O (1980) Biosynthesis and degradation of poly(ADP-ribosyl) histones. In: Smulson M, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier/North Holland, Amsterdam New York, pp 47–56Google Scholar
  2. 2.
    Ueda K, Ogata N, Kawaichi M, Inada S, Hayaishi O (1982) ADP-ribosylation reactions. Cur Top Cell Regul 21:175–187Google Scholar
  3. 3.
    Ueda K, Oka J, Narumiya S, Miyakawa N, Hayaishi O (1972) Poly ADP-ribose glycohydrolase from rat liver nuclei, a novel enzyme degrading the polymer. Biochem Biophys Res Commun 46:516–523PubMedCrossRefGoogle Scholar
  4. 4.
    Miwa M, Tanaka M, Matsushima T, Sugimura T (1974) Purification and properties of a glycohydrolase from calf thymus splitting ribose-ribose linkages of poly(adenosine diphosphate ribose). J Biol Chem 249:3475–3482PubMedGoogle Scholar
  5. 5.
    Okayama H, Honda M, Hayaishi O (1978) Novel enzyme from rat liver that cleaves an ADP-ribosyl histone linkage. Proc Natl Acad Sci USA 75:2254–2257PubMedCrossRefGoogle Scholar
  6. 6.
    Ueda K, Hayaishi O (1985) ADP-ribosylation. Annu Rev Biochem 54:71–99CrossRefGoogle Scholar
  7. 7.
    Riquelme PT, Burzio LO, Koide SS (1979) ADP ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem 254:3018–3028PubMedGoogle Scholar
  8. 8.
    Ogata N, Ueda K, Hayaishi O (1980) ADP-ribosylation sites of histones H1 and H2B. In: Smulson M, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier/North Holland, Amsterdam New York, pp 333–342Google Scholar
  9. 9.
    Ogata N, Ueda K, Kagamiyama H, Hayaishi O (1980) ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14 and COOH-terminal lysine residue as modification sites. J Biol Chem 255:7616–7620PubMedGoogle Scholar
  10. 10.
    Burzio LO, Riquelme PT, Koide SS (1979) ADP ribosylation of rat liver nucleosomal core histories. J Biol Chem 254:3029–3037PubMedGoogle Scholar
  11. 11.
    Ogata K, Ueda K, Hayaishi O (1980) ADP-ribosylation of historie H2B. Identification of glutamic acid residue 2 as the modification site. J Biol Chem 255:7610–7615PubMedGoogle Scholar
  12. 12.
    Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K (1984) ADP-ribosyl protein lyase. Purification, properties, and identification of the product. J Biol Chem 259:986–995PubMedGoogle Scholar
  13. 13.
    Kun E, Chang ACY, Sharma ML, Ferro AM, Nitecki D (1976) Covalent modification of proteins by metabolites of NAD. Proc Natl Acad Sci USA 73:3131–3135PubMedCrossRefGoogle Scholar
  14. 14.
    Moss J, Vaughan M (1978) Isolation of an avian erythrocyte protein possessing ADP-ribosyl-transferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75:3621–3624PubMedCrossRefGoogle Scholar
  15. 15.
    Komura H, Iwashita T, Naoki H, Nakanishi K, Oka J, Ueda K, Hayaishi O (1983) Structure and synthesis of 3-deoxy-D-glycero-pentos-2-ulose, an unusual sugar produced enzymatically from (ADP-ribosyl)histone H2B. J Am Chem Soc 105:5164–5165CrossRefGoogle Scholar
  16. 16.
    Wielckens K, Schmidt A, George E, Bredehorst R, Hilz H (1982) DNA fragmentation and NAD depletion. Their relation to the turnover of endogenous mono(ADP-ribosyl) and poly(ADP-ribosyl) proteins. J Biol Chem 257:12872–12877PubMedGoogle Scholar
  17. 17.
    Williams JC, Chambers JP, Liehr JG (1984) Glutamyl ribose 5-phosphate storage disease. A hereditary defect in the degradation of poly(ADP-ribosylated) proteins. J Biol Chem 259: 1037–1042PubMedGoogle Scholar
  18. 18.
    Williams JC, Butler IJ, Rosenberg HS, Verani R, Scott CI, Conley SB (1984) Progressive neurologic deterioration and renal failure due to storage of glutamyl ribose-5-phosphate. N Engl J Med 311:152–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Kunihiro Ueda
    • 1
  • Osamu Hayaishi
    • 2
  • Jun Oka
    • 3
  • Hajime Komura
    • 4
  • Koji Nakanishi
    • 4
  1. 1.Department of Medical ChemistryKyoto University Faculty of MedicineSakyo-ku, Kyoto 606Japan
  2. 2.Osaka Medical CollegeTakatsuki, Osaka 569Japan
  3. 3.The National Institute of NutritionShinjuku-ku, Tokyo 162Japan
  4. 4.Suntory Institute for Bioorganic ResearchShimamoto-cho, Mishima-gun, Osaka 618Japan

Personalised recommendations