Skip to main content

Poly(ADP-Ribos)ylation of Nuclear Enzymes

  • Chapter
ADP-Ribosylation of Proteins

Abstract

Poly(ADP-ribose) polymerase catalyzes a sequential transfer of an ADP-ribose portion of NAD+ to various chromatin proteins [1] and to the polymerase itself (automodification [2]), forming a polymer of ADP-ribose, which is covalently bound to protein at one end [3]. Recent studies elucidated that two chromatin enzymes, Ca2+, Mg2+-dependent endonuclease [4, 5] and DNA topoisomerase [6, 7], were markedly inhibited as a result of poly(ADP-ribos)ylation of the enzyme proteins. RNA polymerase I [8] and DNA ligase II [9] also are suggested to be poly(ADP-ribos)ylated, although the latter enzyme seems to be activated after poly(ADP-ribos)ylation in vivo. Furthermore, bull seminal RNase [10, 29] and micrococcal nuclease [29] also have been shown to be the acceptors of ADP-ribose in the enzyme reaction in vitro. These results suggest a possibility that poly(ADP-ribose) polymerase randomly modifies many kinds of chromatin enzymes rather than it selecting a few kinds of specific enzymes as its targets. Thus, in order to study whether the modification reaction is specific only for the enzymes described above, we examined six nuclear enzymes, which are involved in metabolism or function of chromatin. After several unsuccessful trials using standard and modified conditions of the reconstituted ADP-ribosylating system, we found that all of these enzymes except DNA ligase I were markedly inhibited when the enzymes were incubated in an ADP-ribosylating reaction mixture containing a limited concentration of buffer (5 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayaishi O, Ueda K (1982) Poly- and mono(ADP-ribosyl)ation reactions: their significance in molecular biology. In: Hayaishi O, Ueda K (eds) ADP-ribosylation reactions. Academic Press, London New York, pp 3–16

    Google Scholar 

  2. Yoshihara K, Hashida T, Tanaka Y, Matsunami N, Yamaguchi A, Kamiya T (1981) Mode of enzyme-bound poly(ADP-ribose) synthesis and histone modification by reconstituted poly-(ADP-ribose) polymerase-DNA-cellulose complex. J Biol Chem 256:3471–3478

    PubMed  CAS  Google Scholar 

  3. Nishizuka Y, Ueda K, Yoshihara K, Yamamura H, Takeda M, Hayaishi O (1969) Enzymic adenosine diphosphoribosylation of nuclear proteins. Cold Spring Harbor Symp Quant Biol 34:781–786

    PubMed  CAS  Google Scholar 

  4. Yoshihara K, Tanigawa Y, Burzio L, Koide SS (1975) Evidence for adenosine diphosphate ribosylation of Ca2+, Mg2+-dependent endonuclease. Proc Natl Acad Sci USA 72:289–293

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka Y, Yoshihara K, Itaya A, Kamiya T, Koide SS (1984) Mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease of bull seminal plasm induced by ADP-ribosylation. J Biol Chem 259:6579–6585

    PubMed  CAS  Google Scholar 

  6. Ferro AM, Olivera BM (1984) Poly(ADP-ribosylation) of DNA topoisomerase I from calf thymus. J Biol Chem 259:547–554

    PubMed  CAS  Google Scholar 

  7. Jongstra-Bilen J, Ittel ME, Niedergang C, Vosberg HP, Mandel P (1983) DNA topoisomerase I from calf thymus is inhibited in vitro by poly(ADP-ribosylation) Eur J Biochem 136:391–396

    Article  PubMed  CAS  Google Scholar 

  8. Müller WEG, Zahn RK (1976) Poly ADP-ribosylation of DNA-dependent RNA polymerase I from quail oviduct: dependence on progesterone stimulation. Mol Cell Biol 12:147–159

    Google Scholar 

  9. Shall S (1983) ADP-ribosylation, DNA repair, cell differentiation and cancer. In: Miwa et al. (eds) ADP-ribosylation, DNA repair, and cancer. Jpn Sci Soc Press, Tokyo, pp 3–25

    Google Scholar 

  10. Leone E, Farina B, Faraone-Mennella MR, Maura A (1980) ADP-ribosylation of ribonucleases. In: Holzer H (ed) Metabolic interconversion of enzymes 1980. Springer, Berlin Heidelberg New York, pp 294–302

    Google Scholar 

  11. Yoshihara K, Hashida T, Tanaka Y, Ohgushi H, Yoshihara H, Kamiya T (1978) Bovine thymus poly(adenosine diphosphate ribose) polymerase. J Biol Chem 253:6459–6466

    PubMed  CAS  Google Scholar 

  12. Teraoka H, Tsukada K (1982) Eukaryotic DNA ligase purification and properties of the enzyme from bovine thymus and immunochemical studies of the enzyme from animal tissues. J Biol Chem 257:4758–4763

    PubMed  CAS  Google Scholar 

  13. Teraoka H, Sawai M, Tsukada K (1983) DNA ligase from mouse Ehrlich ascites tumor cells. J Biochem 95:1529–1532

    Google Scholar 

  14. Hashida T, Tanaka Y, Matsunami N, Yoshihara K, Kamiya T, Tanigawa Y, Koide SS (1982) Purification and properties of bull seminal plasm Ca2+, Mg2+-dependent endonuclease. J Biol Chem 257:13114–13119

    PubMed  CAS  Google Scholar 

  15. Yoshida S, Nakamura H (1981) Terminal deoxynucleotidyl transferase in gene engineering. Protein Nucleic Acid Enzymes 26:569–574

    CAS  Google Scholar 

  16. Yoshihara K, Tanigawa Y, Koide SS (1974) Inhibition of rat liver Ca2+, Mg2+-dependent endonuclease activity by nicotinamide adenine dinucleotide and poly(adenosine diphosphate ribose) synthetase. Biochem Biophys Res Commun 59:658–665

    Article  PubMed  CAS  Google Scholar 

  17. Söderhäll S, Lindahl T (1975) Mammalian DNA ligases, serological evidence for two separate enzymes. J Biol Chem 250:8438–8444

    PubMed  Google Scholar 

  18. Teraoka H, Shomoyachi M, Tsukada K (1975) Two distinct polynucleotide ligases from rat liver. FEBS Lett 54:217–220

    Article  PubMed  CAS  Google Scholar 

  19. Teraoka H, Shimoyachi M, Tsukada K (1977) Purification and properties of deoxyribonucleic acid ligases from rat liver. J Biochem (Tokyo) 81:1253–1260

    CAS  Google Scholar 

  20. Yagura T, Kozu T, Seno T, Saneyoshi M, Hiruga S, Nagano H (1983) Novel form of DNA polymerase α associated with DNA primase activity of vertebrates. J Biol Chem 258:13070–13075

    PubMed  CAS  Google Scholar 

  21. Yagura T, Kozu T, Seno T (1982) Mouse DNA polymerase accompanied by a novel RNA polymerase activity: purification and partial characterization. J Biochem (Tokyo) 91:607–618

    CAS  Google Scholar 

  22. Yagura T, Kozu T, Seno T (1982) Mouse DNA replicase: DNA polymerase associated with a novel RNA polymerase activity to synthesize initiator RNA of strict size. J Biol Chem 257: 11121–11127

    PubMed  CAS  Google Scholar 

  23. Sugimura T, Shimizu T (1968) Formation of poly(ADP-ribose) from NAD by nuclear enzyme preparations. Seikagaku 40:1–17

    Google Scholar 

  24. Waser J, Hübscher U, Kuenzle CC, Spadari S (1979) DNA polymerase ß from brain neurons is repair enzyme. Eur J Biochem 97:361–368

    Article  PubMed  CAS  Google Scholar 

  25. Chang LMS, Plevani P, Bollum FJ (1981) Proteolytic degradation of calf thymus terminal depcynucleotidyl transferase. J Biol Chem 257:5700–5706

    Google Scholar 

  26. Ohgushi H, Yoshihara K, Kamiya T (1979) Bovine thymus poly(adenosine diphosphate ribose) polymerase: physical properties and binding to DNA. J Biol Chem 255:6205–6211

    Google Scholar 

  27. Creissen D, Shall S (1982) Regulation of DNA ligase activity by poly(ADP-ribose) Nature (London) 296:271–272

    Article  CAS  Google Scholar 

  28. Ono K, Ohashi Y, Tanabe K, Matsukage A, Nishizawa M, Takahashi T (1979) Unique requirements for template-primers of DNA polymerase β from rat ascites hepatoma AH130. Nucleic Acids Res 7:715–726

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka Y, Yoshihara K, Ohashi Y, Itaya A, Nakano T, Ito K, Kamiya T (1985) A method for determining oligo- and poly(ADP-ribosyl)ated enzymes and proteins in vitro. Anal Biochem 145:137–143

    Article  PubMed  CAS  Google Scholar 

  30. Yoshihara K, Itaya A, Tanaka Y, Ohashi Y, Ito K, Teraoka H, Tsukada K, Matsukage A, Kamiya T (1985) Inhibition of DNA polymerase α, DNA polymerase β, terminal deoxynucleotidyl transferase, and DNA ligase II by poly(ADP-ribosyl)ation reaction in vitro. Biochem Biophys Res Commun 128:61–67

    Article  PubMed  CAS  Google Scholar 

  31. Teraoka H, Sawai M, Tsukada K (in preparation)

    Google Scholar 

  32. Ohashi Y, Itaya A, Tanaka Y, Ito K, Yoshihara K, Matsukage Y, Kamiya T (in preparation)

    Google Scholar 

  33. Tanaka Y, Ito K, Yoshihara K (unpublished)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshihara, K. et al. (1985). Poly(ADP-Ribos)ylation of Nuclear Enzymes. In: Althaus, F.R., Hilz, H., Shall, S. (eds) ADP-Ribosylation of Proteins. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70589-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70589-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70591-5

  • Online ISBN: 978-3-642-70589-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics