Skip to main content

Cholera Toxin: Genetic Analysis, Regulation, and Role in Pathogenesis

  • Chapter
Genetic Approaches to Microbial Pathogenicity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 118))

Abstract

One of the most well studied and earliest recognized mechanisms of bacterial pathogenesis is the production of potent exotoxins. Protein toxins are clearly involved in the pathogenesis of a wide variety of bacterial diseases affecting mankind. These include cholera, diphtheria, pertussis, anthrax, dysentery, tetanus, gas gangrene, and opportunistic infections caused by Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogenes, and Clostridium difficile. Even Escherichia coli does on occasion possess the necessary genetic information for the production of several protein toxins which can enhance its pathogenicity. Yet, as of the date of this review, a detailed understanding of the molecular events involved in the genetic regulation of any one of these bacterial toxins has not been achieved. Moreover, the specific advantage or benefit imparted to the microbe by the production of these often lethal proteins has never been clearly elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson RP, Roth JR (1977) Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 31:473–505

    Article  PubMed  CAS  Google Scholar 

  • Baine WB, Vasil ML, Holmes RK (1978) Genetic mapping of mutations in independently isolated nontoxinogenic mutants of Vibrio cholerae. Infect Immun 21:194–200

    PubMed  CAS  Google Scholar 

  • Baselski VS, Medina RA, Parker CD (1978) Survival and multiplication of Vibrio cholerae in the upper bowel of infant mice. Infect Immun 22:435–440

    PubMed  CAS  Google Scholar 

  • Baselski VS, Medina RA, Parker CD (1979) In vivo and in vitro characterization of virulence -deficient mutants of Vibrio cholerae. Infect Immun 24:111–116

    PubMed  CAS  Google Scholar 

  • Better M, Helinski DR (1983) Isolation and characterization of the recA gene of Rhizobium meliloti. J. Bacteriol 155:1–446

    Google Scholar 

  • Bjorn MJ, Iglewski BH, Ives SK, Sadoff JC, Vasil ML (1978) Effect of iron on yields of exotoxin A in cultures of Pseudomonas aeruginosa PA 103. Infect Immun 19:785–791

    PubMed  CAS  Google Scholar 

  • Bourne HR, Lehrer RI, Lichenstein LM, Weissmann G, Zurier R (1973) Effects of cholera enterotoxin on adenosine 3’,5’-mono-phosphate and neutrophil function. J Clin Invest 52:698–706

    Article  PubMed  CAS  Google Scholar 

  • Callahan LT, Richardson SH (1973) Biochemistry of Vibrio cholerae virulence. III. Nutritional requirements for toxin production and the effects of pH on toxin elaboration in chemically defined media. Infect Immun 7:567–574

    PubMed  CAS  Google Scholar 

  • Callahan LT, Ryder RC, Richardson SH (1971) Biochemistry of Vibrio cholerae virulence. II. Skin permeability factor cholera enterotoxin production in chemically defined media. Infect Immun 4:611–618

    PubMed  CAS  Google Scholar 

  • Cassel D, Pfeuffer T (1978) Mechanism of cholera toxin action: covalent modification of the guanyl- binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 75:2669–2673

    Article  PubMed  CAS  Google Scholar 

  • Collier RJ, Mekalanos JJ (1980) ADP-ribosylating exotoxins. In: Bisswanger H, Schmincke-Ott E (eds) Multifunctional proteins. Wiley, New York Confer DL, Eaton JW (1982) Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science 217:948–950

    Google Scholar 

  • Cox JP, Karnovsky ML (1973) The depression of phagocytosis by exogenous cyclic nucleotides, prostaglandins, and theophylline. J Cell Biol 59:480–490

    Article  PubMed  CAS  Google Scholar 

  • Craig JP (1966) Preparation of vascular permeability factor of Vibrio cholerae. J Bacteriol 92:793–795

    PubMed  CAS  Google Scholar 

  • Cray WC, Tokunaga E, Pierce NF (1983) Successful colonization and immunization of adult rabbits by oral inoculation with Vibrio cholerae. Infect Immun 41:735–741

    PubMed  Google Scholar 

  • Cuatrecasas P (1973) Vibrio cholerae choleragenoid: mechanism of inhibition of cholera toxin action. Biochemistry 2:3577–3581

    Article  Google Scholar 

  • Dallas WS, Falkow S (1979) The molecular nature of heat-labile enterotoxin (LT) of Escherichia coli. Nature 277:406–407

    Article  PubMed  CAS  Google Scholar 

  • Dallas WS, Faklow S (1980) Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature 288:499–501

    Article  PubMed  CAS  Google Scholar 

  • Dallas WS, Gill DM, Falkow S (1979) Cistons encodingEscherichia coli heat-labile toxin. J Bacteriol 139:850–858

    PubMed  CAS  Google Scholar 

  • Dutta NK, Habbu HK (1955) Experimental cholera in infant rabbits: a method for chemotherapeutic investigation. Br J Pharmacol Chemother 10:153–159

    PubMed  CAS  Google Scholar 

  • Edlund T, Grundstrom T, Normark S (1979) Isolation and characterization of DNA repetitions carrying the chromosomal /?-lactamase gene of Escherichia coli K12. MGG 173:115–124

    PubMed  CAS  Google Scholar 

  • Evans DJ, Richardson SH (1968) In vitro production of choleragen and vascular permeability factor by Vibrio cholerae. J Bacteriol 96:126–130

    PubMed  CAS  Google Scholar 

  • Field M (1980) Intestinal secretion and its stimulation by enterotoxins. In: Ouchterlony O, Holmgren J (eds) Cholera and related diarrheas. Karger, Basel, pp 46–52

    Google Scholar 

  • Field M, Ptotkin G, Silen W (1968) Effects of vasopressin, theophyline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature 211:469–411

    Article  Google Scholar 

  • Finkelstein RA (1973) Cholera. CRC Crit Rev Microbiol 2:553–623

    Article  CAS  Google Scholar 

  • Finkelstein RA, LoSpalluto JJ (1970) Production, purification and assay of cholera toxin. Production of highly purified choleragen and choleragenoid. J Infect Dis 121S:S63-S72

    Article  Google Scholar 

  • Finkelstein RA, Vasil ML, Holmes RK (1974) Studies on toxinogenesis inVibrio cholerae. I. Isolation of mutants with altered toxinogenicity. J Infect Dis 129:117–123

    Article  PubMed  CAS  Google Scholar 

  • Freter R, O’Brien PCM (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect Immun 34:222–233

    PubMed  CAS  Google Scholar 

  • Freter R, O’Brien PCM, Macsai MS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34:234—240

    PubMed  Google Scholar 

  • Gennaro ML, Greenaway PJ (1983) Nucleotide sequences within the cholera toxin operon. Nucleic Acid Res 11:3855–3861

    Article  PubMed  CAS  Google Scholar 

  • Gennaro ML, Greenaway PJ, Broadbent DA (1982) The expression of biologically active cholera toxin in Escherichia coli. Nucleic Acid Res 10:4883–4890

    Article  PubMed  CAS  Google Scholar 

  • Gill DM (1976) The arrangement of subunits in cholera toxin. Biochemistry 15:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Gill DM, King CA (1975) The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem 250:6224–6432

    Google Scholar 

  • Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75:3050–3054

    Article  PubMed  CAS  Google Scholar 

  • Gill DM, Rappaport RS (1977) The origin of Al. In the 12th joint conference on cholera. US-Japan cooperative medical science program, Japan. National Institute of Health, Bethesda, MD

    Google Scholar 

  • Gill DM, Richardson SH (1980) Adenosine diphosphate ribosylation of adenylate cyclase catalyzed by the heat-labile enterotoxin of Escherichia coli: comparison with cholera toxin. J Infect Dis 141:64–70

    Article  PubMed  CAS  Google Scholar 

  • Gilman AG (1984) G proteins and dual control of adenylate cyclase. Cell 36:577–579

    Article  PubMed  CAS  Google Scholar 

  • Goldberg I, Mekalanos JJ (1985 a) Transfer of the cholera toxin genetic element into nontoxinogenic strains of Vibrio cholerae. Manuscript in preparation

    Google Scholar 

  • Goldberg I, Mekalanos JJ (1985 b) Effect of a recA mutation of cholera toxin gene amplification and deletion events. Manuscript in preparation

    Google Scholar 

  • Goldberg S, Murphy JR (1983) Molecular epidemiological studies of United States Gulf coast Vibrio cholerae strains: integration site of mutator vibriophage VcA-3. Infect Immun 42:224–230

    PubMed  CAS  Google Scholar 

  • Gray GL, Smith H, Baldridge JS, Harkins RN, Vasil ML, Ellson CY, Heyneker HL (1984) Cloning, nucleotide sequence, and expression inEscherichia coli of the exotoxin A structural gene of Pseudomonas aeruginos. Proc Natl Acad Sci USA 81:2645–2649

    Article  PubMed  CAS  Google Scholar 

  • Guentzel MN, Berry LJ (1975) Motility as a virulence factor of Vibrio cholerae. Infect Immun 15:539–548

    Google Scholar 

  • Holmes RK, Vasil M, Finkelstein RA (1975) Studies on toxinogenesis in Vibrio cholerae. III. Characterization of nontoxinogenic mutants in vitro and in experimental animals. J Clin Invest 55:551–556

    Article  PubMed  CAS  Google Scholar 

  • Holmes RK, Baine WB, Vasil ML (1978) Quantitative measurements of cholera enterotoxin in cultures of toxinogenic wild-type and nontoxigenic mutant strains of Vibrio cholerae by using a sensitive and specific reversed passive hemagglutination assay for cholera enterotoxin. Infect Immun 19:101–106

    PubMed  CAS  Google Scholar 

  • Holmgren J, Lonnroth I (1980) Structure and function of enterotoxins and their receptors. In: Ouchterlony Ö, Holmgren J (eds) Cholera and related diarrheas. Karger, Basel, pp 88-103

    Google Scholar 

  • Honda T, Finkelstein RA (1979) Selection and characteristics of a Vibrio cholerae mutant lacking the A (ADP-ribosylating) portion of the cholera enterotoxin. Proc Natl Acad Sci USA 76:2052–2056

    Article  PubMed  CAS  Google Scholar 

  • Honjo T, Nishizuka Y, Hayaishi O, Kato I (1968) Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 243:3553–3555

    PubMed  CAS  Google Scholar 

  • Howard BD (1971) A prototype live oral cholera vaccine. Nature 230:97–99

    Article  PubMed  CAS  Google Scholar 

  • Iglewski BH, Kabat D (1975) NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci USA 72:2284–2288

    Article  PubMed  CAS  Google Scholar 

  • Iglewski WJ (1984) Critical roles for mono (ADP-ribosyl) transferases in cellular regulation. ASM News 50:195–198

    Google Scholar 

  • Johnson SR, Liu BCS, Romig WR (1981) Auxotropic mutations induced by Vibrio cholerae mutator phage VcAl. FEMS Microbiol Lett 11:13–16

    Article  Google Scholar 

  • Kaper JB, Levine MM (1981) Cloned cholera enterotoxin genes in study and prevention of cholera. Lancet 11:1162–1163

    Article  Google Scholar 

  • Kaper JB, Moseley SL, Falkow S (1981) Molecular characterization of environmental and nontoxinogenic strains of Vibrio cholerae. Infect Immun 32:661–667

    PubMed  CAS  Google Scholar 

  • Kaper JB, Lockman H, Baldini MM, Levine MM (1984 a) Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates. Nature 308:655–658

    Article  PubMed  CAS  Google Scholar 

  • Kaper JB, Lockman H, Baldini MM, Levine MM (1984b) A recombinant live oral cholera vaccine. Biotech 2:345–349

    Article  CAS  Google Scholar 

  • Katada T, Ui M (1982) Direct modification of membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci USA 79:3129–3133

    Article  PubMed  CAS  Google Scholar 

  • Knop J, Rowley D (1975) Protection against cholera. A bactericidal mechanism on the mucosal surface of the small intestine of mice. Aust J Exp Biol 53:155–165

    Article  CAS  Google Scholar 

  • Kurosky A, Markel DE, Peterson JW (1977) Covalent structure of the chain of cholera enterotoxin. J Biol Chem 252:7257–7264

    PubMed  CAS  Google Scholar 

  • Lai CY (1977) Determination of the primary structure of cholera toxin subunit. J Biol Chem 252:7249–7256

    PubMed  CAS  Google Scholar 

  • Leppala SH (1982) Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations in eukaryotic cells. Proc Natl Acad Sci USA 79:3162–3166

    Article  Google Scholar 

  • Levine MM, Black RE, Clements ML, Lanata C, Sears S, Honda T, Young CR, Finkelstein RA (1984) Evaluation in humans of attenuated Vibrio cholerae El Tor Ogawa strain Texas Star-SR as a live oral vaccine. Infect Immun 43:515–522

    PubMed  CAS  Google Scholar 

  • Lockman H, Kaper JB (1983) Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J Biol Chem 258:13722–13726

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35:253- 263

    Article  PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Murphy JR (1980) Regulation of cholera toxin production in Vibrio cholerae: Genetic nalysis of phenotypic instability in hypertoxinogenic mutants. J Bacteriol 141:570–576

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1978) Affinity filters, a new approach to the isolation of tox mutants of Vibrio cholerae. Proc Natl Acad Sci USA 75:941–945

    Article  PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1979 a) The enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 254:5855–5861

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Collier RJ, Romig WR (1979 b) The enzymic activity of cholera toxin. I. New method of assay and the mechanism of ADP-ribosyl transfer. J Biol Chem 254:5849–5854

    PubMed  CAS  Google Scholar 

  • Mekalanos J J, Sublett R, Romig WR (1979 c) Genetic mapping of toxin regulatory mutations in Vibrio cholerae. J Bacteriol 139:859–865

    PubMed  CAS  Google Scholar 

  • Mekalanos JJ, Moseley SL, Murphy JR, Falkow S (1982) Isolation of enterotoxin structural gene deletion mutations in Vibrio cholerae induced by two mutagenic vibriophages. Proc Natl Acad Sci USA 79:151–155

    Article  PubMed  CAS  Google Scholar 

  • Mekalanos J J, Swartz DJ, Pearson GDN, Harford N, Groyne F, de Wilde M (1983) Cholera toxin genes: nucleotide sequence, deletion analysis, and vaccine development. Nature 306:551–557

    Article  PubMed  CAS  Google Scholar 

  • Miller V, Mekalanos JJ (1984) Synthesis of cholera toxin is positively regulated at the transcriptional level bytoxR. Proc Natl Acad Sci USA 81:3471–3475

    Article  PubMed  CAS  Google Scholar 

  • Miller V, Mekalanos J J (1985) Genetic Analysis of the cholera toxin positive regulatory gene toxR

    Google Scholar 

  • Moseley SL, Falkow S (1980) Nucleotide sequence homology between the heat-labile enterotoxin gene of Escherichia coli and Vibrio cholerae DNA. J Bacteriol 144:444–446

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen. Evidence for ADP-ribosyl transferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1983) NAD: arginine ADP-ribosyltransferases: enzymatic activities in animal cells and bacterial toxins. In: Johnson BC (ed) Posttranslational covalent modifications of protein. Academic, New York

    Google Scholar 

  • Neill RJ, Ivins BE, Holmes RK (1983) Synthesis and secretion of the plasmid-coded heat-labile enterotoxin of Escherichia coli in Vibrio cholerae. Science 221:289–291

    Article  PubMed  CAS  Google Scholar 

  • Nichols J, Murphy JR, Robb M, Echeverria P, Craig JP (1979) Isolation and characterization of Vibrio cholerae mutants which produce defective cholera toxin. In: Proceedings of the 14th conference on cholera. US-Japan cooperative medical science program. National Institutes of Health, Bethesda

    Google Scholar 

  • Owen RL, Pierce NF, Cray WC, Juhasz E (1983) Uptake and transport of living and killed Vibrio cholerae into rabbit Peyer’s patches: an electron microscopic and autoradiographic study. In: Proceedings of the 19th joint conference on cholera, US-Japan cooperative medical science program. National Institutes of Health, Bethesda

    Google Scholar 

  • Pearson GDN, Mekalanos JJ (1982) Molecular cloning of the Vibrio cholerae enterotoxin genes in Escherichia coli K12. Proc Natl Acad Sci USA 79:2976–2980

    Article  PubMed  CAS  Google Scholar 

  • Richardson SH (1969) Factors influencing the in vitro skin permeability factor production in Vibrio cholerae. J Bacteriol 100:27–34

    PubMed  CAS  Google Scholar 

  • Rownd RH, Perlman D, Goto N (1975) Structure and replication of R factor DNA in Proteus mirabilis. In: Schlessinger D (ed) Microbiology 1974. American Society for Microbiology, Washington DC

    Google Scholar 

  • Ruch FE, Murphy JR, Graf LH, Field M (1978) Isolation of nontoxinogenic mutants of Vibrio cholerae in a colorimetric assay for cholera toxin using the S49 mouse lymphosarcoma cell line. J Infect Dis 137:747–755

    Article  PubMed  CAS  Google Scholar 

  • Ruvkun GB, Ausubel FM (1981) A general method for site-directed mutagenesis in procaryotes. Nature 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Sagar IK, Nagesha CN, Bhat JV (1979) Effect of metal ions on the production of vascular permeability factor by strain 569B of Vibrio cholerae. Indian J Med Res 69:18–25

    PubMed  CAS  Google Scholar 

  • Sagar IK, Nagesha CN, Bhat JV (1981) The role of trace elements and phosphates in the synthesis of vascular permeability factor by Vibrio cholerae. J Med Microbiol 14:243–250

    Article  PubMed  CAS  Google Scholar 

  • Saunders DW, Schanbacher JK, Bramucci MG (1982) Mapping of a gene of Vibrio cholerae that determines the antigenic structure of cholera toxin. Infect Immun 38:1109–1116

    PubMed  CAS  Google Scholar 

  • Saunders DW, Kubala GJ, Vaidya AB, Bramucci MG (1983) Evidence indicating that the cholera toxin structural genes of Vibrio cholerae and 3083–2 are between met and trp. Infect Immun 42:427–430

    PubMed  CAS  Google Scholar 

  • So M, Dallas WS, Falkow S (1978) Characterization of anEscherichia coli plasmid coding for synthesis of heat-labile toxin: molecular cloning of the toxin determinant. Infect Immun 21:405–411

    PubMed  CAS  Google Scholar 

  • Spicer EK, Nobel J A (1982) Escherichia coli heat-labile enterotoxin-nucleotide sequence of the A sub- unit gene. J Biol Chem 257:5716–5721

    PubMed  CAS  Google Scholar 

  • Sporecke I, Castro D, Mekalanos JJ (1984) Genetic mapping of the Vibrio cholerae enterotoxin structural genes. J Bacteriol 157:253–261

    PubMed  CAS  Google Scholar 

  • Tokunaga E, Cray WC, Pierce NF (1984) Compared colonizing and immunizing efficiency of toxinogenic (A + B +) Vibrio cholerae and an A — B 4- mutant (Texas Star-SR) studied in adult rabbits. Infect Immun 44:364–369

    PubMed  CAS  Google Scholar 

  • Van Heyningen WE, Carpenter CCJ, Pierce NF, Greenough WB (1971) Deactivation of cholera toxin by ganglioside. J Infect Dis 124:415

    Article  PubMed  Google Scholar 

  • Vasil ML, Holmes RK, Finkelstein RA (1975) Conjugal transfer of a chromosomal gene determining production of the enterotoxin inVibrio cholerae. Science 187:849–850

    Article  PubMed  CAS  Google Scholar 

  • Woodward WE, Gilman R, Hornick R, Libonati J, Cash R (1975) Efficacy of a live oral cholera vaccine in human volunteers. In: Proceedings of the 11th joint conference on cholera, US-Japan cooperative medical science program. National Institutes of Health, Bethesda

    Google Scholar 

  • Yagi Y, Clewell DB (1976) Plasmid-determined tetracycline resistance in Streptococcus faecalis: tan- demly repeated resistance determinants in amplified forms of pAMl DNA. J Mol Biol 102:583–600

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mekalanos, J.J. (1985). Cholera Toxin: Genetic Analysis, Regulation, and Role in Pathogenesis. In: Goebel, W. (eds) Genetic Approaches to Microbial Pathogenicity. Current Topics in Microbiology and Immunology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70586-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70586-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70588-5

  • Online ISBN: 978-3-642-70586-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics