Mathematics of the Multiple Objective Programming Problem — a Tutorial

  • H. Isermann


The constitutive conponents of a multiple objective decision model are:
  1. 1.

    a set X of potential or feasible alternatives,

  2. 2.

    K > 1 objective functions zk: X → ℝ with k = 1, ..., K,

  3. 3.

    K binary preference relations RK (k = 1, ..., K).





Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, S. and Green, D. Jr., ‘Budgeting and employee behaviour’, The Journal of Business, 35, 1962, pp. 392–402.CrossRefGoogle Scholar
  2. Becker, S. and Siegel, S., ‘Utility of grades: level of aspiration in a decision theory context’, Journal of Experimental Psychology, 55, 1958, pp. 81–85.CrossRefGoogle Scholar
  3. Chapman D.W. and Volkmann, J., ‘A social determinant of the level of aspiration’, Journal of Abnormal Psychology, 34, 1939, pp. 225–238.CrossRefGoogle Scholar
  4. Isermann, H., ‘Proper efficiency and the linear vector maximum problem’, Operations Research, 22, 1974, pn. 189–191.CrossRefGoogle Scholar
  5. Isermann, H., ‘The enumeration of the set of all efficient solutions for a multiple objective linear program’, Operations Research Quarterly, 28, 1977, pp. 711–725.CrossRefGoogle Scholar
  6. Isermann, H., ‘The relevance of duality in multiple objective linear programming’, TIMS Studies in the Management Sciences, 6, 1977e, pp. 241–262.Google Scholar
  7. Isermann, H. and Steuer, R., Payoff Tables and Minimum Criterion Values Over the Efficient Set, Coll. Bus. Admin., University of Georgia, Athens, 1984.Google Scholar
  8. Kosmol, P., ‘Zur vektorwertigen Optimierung’, Operations Research-Verfahren XV, 1973, pp. 77–84.Google Scholar
  9. McGregor, D., ‘An uneasy look at performance appraisal’, Harvard Business Review, 35, 1957, no. 3.Google Scholar
  10. Simon, H.A., Models of Man, Wiley, New York, 1967.Google Scholar
  11. Stedry, A., ‘Aspiration levels, attitudes and performance in a goal-oriented situation’, Industrial Management Review, 3. no. 2, 1962. 152Google Scholar
  12. Steuer, R., Multiple Criteria Optimization, Wiley, New York, 1985.Google Scholar
  13. Winterfeldt, D. von and Fischer, G.W., ’ Multi-attribute utility theory: models and assessment procedures’, in: Wendt, D. and Vlek, C. (eds), Utility, Probability and Human Decision Making, R. Reidel, Dordrecht, 1975, pp. 47–85.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Isermann

There are no affiliations available

Personalised recommendations