Advertisement

Cadmium pp 213-226 | Cite as

Rapid and Reliable Voltammetric Determination of Cadmium in Environmental and Biological Materials

  • Peter Ostapczuk
  • Markus Stoeppler
Conference paper
Part of the Environmental Toxin Series book series (TOXIN SERIES, volume 2)

Abstract

Reliable analytical approaches for the determination of cadmium at trace and ultratrace levels in numerous materials either as routine or reference methods are the voltammetric modes differential pulse anodic stripping voltammetry (DPASV) and square wave voltammetry (SWV). The potential of these methods, partly in direct comparison, in some cases also checked by graphite furnace atomic absorption spectrometry (GFAAS) is presented and demonstrated for a selection of applications to aqueous, biological, food and environmental samples.

Keywords

Differential Pulse Voltammetry Graphite Furnace Atomic Absorption Spectrometry Square Wave Voltammetry Hang Mercury Drop Electrode Wave Voltammetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang J (1985) Stripping Analysis, Principles, Instrumentation and Applications VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  2. 2.
    Bond AM (ed), Modern Polarographic Methods in Analytical Chemistry, 1980, M. Dekker, INC. New York, pp 71–72Google Scholar
  3. 3.
    Barker GC, Jenkins JL (1958) Analyst 18: p 118Google Scholar
  4. 4.
    Osteryoung JG, Osteryoung RA (1983) Square wave voltammetry, Anal. Chem. 57: pp 101A–110AGoogle Scholar
  5. 5.
    Klahre P, Valenta P, Nürnberg HW (1978) Ein normiertes Pulse-polarographisches Verfahren zur Prüfung des Trinkwassers auf toxische Metalle. Jahrbuch „Vom Wasser“ 51: pp 199–219Google Scholar
  6. 6.
    Mart L (1979) Ermittlung und Vergleich des Pegels toxischer Spurenelemente in nordatlantischen und mediterranen Küstengewässern, Dissertation, AachenGoogle Scholar
  7. 7.
    Dorten W, Valenta P, Nürnberg HW (1984) A New Photodigestion Device to Decompose Organic Matter in Water, Fresenius Z. Anal. Chem. 317: pp 264–272CrossRefGoogle Scholar
  8. 8.
    Golimowski J, Valenta P, Nürnberg HW (1959) Toxic trace metals in food. I. A new voltammetric procedure for toxic trace metal control of wines, Z. Lebensm. Unters. Forsch. 168: pp 333–359Google Scholar
  9. 9.
    Bock R (1972) Aufschlußmethoden der anorganischen und organischen Chemie, Verlag Chemie, p 116Google Scholar
  10. 10.
    Stoeppler M (1980) Analysis of Nickel in Biological Materials and Natural Waters, in: Nickel in the Environment, pp 661–821, Nriagu JO (ed), John Wiley, New YorkGoogle Scholar
  11. 11.
    Valenta P, Ostapczuk PH, Pihlar B, Nürnberg HW (1981) New Applications of Voltammetry in the Determination of Toxic Trace Metals in Food, Proc. Int. Conf Heavy Metals in the Environment, Amsterdam, 15.–18.9.1981, pp 619–621, CEP Consult., EdinburghGoogle Scholar
  12. 12.
    Oehme M, Lund W (1979) Comparison of Digestion Procedures for the Determination of Heavy Metals (Cd, Cu, Pb) in Blood by Anodic Stripping Voltammetry, Fresenius Z. Anal. Chem., pp 260–268Google Scholar
  13. 13.
    Stoeppler M, Backhaus F (1978) Pretreatment studies with biological and environmental materials. I. Systems for pressurized multisample decomposition, Fresenius Z. Anal. Chem. 291: pp 116–120Google Scholar
  14. 14.
    Nürnberg HW (1979) Polarography and voltammetry in studies of toxic metals in man and his environment, Sei. Tot. Environ. 12: pp 151–167CrossRefGoogle Scholar
  15. 15.
    Nürnberg HW (1983) Voltammetric Studies on Trace Metal Speciation in Natural Waters. Part II: Application and Conclusions for Chemical Oceanography and Chemical Limnology, in: Trace Element Speciation in Surface Waters and its Ecological Implications, Leppard GG (ed), pp 211–230, Plenum Publ. Corp., New York - LondonGoogle Scholar
  16. 16.
    Mart L (1976) Studien zur Anwendung voltammetrischer Methoden bei der Bestimmimg von Cadmium, Blei und Kupfer in natürlichen Gewässern, Diplomarbeit, AachenGoogle Scholar
  17. 17.
    Stoeppler M (1983) Atomic Absorption Spectrometry - a Valuable Tool for Trace and Ultratrace Determination of Metals and Metalloids in Biological Materials, Spectrochim. Acta 38B 1559–1568Google Scholar
  18. 18.
    Mohl C, Ostapczuk P, Stoeppler M (1984) Direkte Bestimmung von Blei und Cadmium in Harn mit Graphitrohr-AAS und der L’vov-Plattform, in: Fortschritte in der atomspektroskopischen Spurenanalytik, Welz B (Hrsg), Band I, pp 317–326, Verlag Chemie, WeinheimGoogle Scholar
  19. 19.
    Nürnberg HW (1983) Potentialities and Applications of Voltammetry in the Analysis of Toxic Trace Metals in Body Fluids, in: Facchetti S (ed), Analytical Technology for Heavy Metals in Biological Fluids, pp 209–232, Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Nürnberg HW (1982) Voltammetric Trace Analysis in Ecological Chemistry of Toxic Metals, Pure Appl. Chem. 54: pp 853–878Google Scholar
  21. 21.
    Golimowski J, Valenta P, Stoeppler M, Nürnberg HW (1979) A rapid high-performance analytical procedure with simultaneous voltammetric determination of toxic trace metals in urine, Talanta 26: pp 649–656CrossRefGoogle Scholar
  22. 22.
    Stoeppler M (1984) Cadmium in: Merian E, Geldmacher-von Mallinckrodt M, Machata G, Nürnberg HW, Schlipköter HW, Stumm W (eds) Metalle in der Umwelt, pp 375–408, Verlag Chemie, WeinheimGoogle Scholar
  23. 23.
    Narres HD, Valenta P, Nürnberg HW (1984) Die voltammetrische Bestimmung von Schwermetallen in Fleisch und inneren Organen von Schlachtrindern, Z. Lebensm. Unters. Forsch. 179: pp 440–446CrossRefGoogle Scholar
  24. 24.
    Ostapczuk P, Gödde M, Stoeppler M, Nürnberg HW (1984) Kontroll- und Routinebestimmung von Zn, Cd, Pb, Cu, Ni und Co mit differentieller Pulsvoltammetrie in Materialien der Deutschen Umweltprobenbank, Fresenius Z. Anal. Chem. 317: pp 252–256CrossRefGoogle Scholar
  25. 25.
    Wojciechowski M, Go W, Osteryoung J (1985) Square-Wave Anodic Stripping Analysis in the Presence of Dissolved Oxygen, Anal. Chem. 57: pp 155–158Google Scholar
  26. 26.
    Franke JP, de Zeeuw RA (1976) Differential pulse anodic stripping voltammetry as a rapid screening technique for heavy metal intoxications, Arch. Toxicol. 37: pp 47–55Google Scholar
  27. 27.
    Franke JP (1978) Potentials of anodic stripping voltammetry for the toxicological analysis of heavy metals, Doctoral Thesis, GroningenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Peter Ostapczuk
    • 1
  • Markus Stoeppler
    • 1
  1. 1.Institut für Chemie der Kernforschungsanlage Jülich GmbHJuelichGermany

Personalised recommendations