Advertisement

Biotransformation of PCBs: Metabolic Pathways and Mechanisms

Conference paper
Part of the Environmental Toxin Series book series (TOXIN SERIES, volume 1)

Abstract

Biotransformation of PCBs to hydroxylated metabolites by the microsomal cytochrome P-450 system is the critical event that determines the biological half-lives of these widespread environmental contaminants. The factors that determine the rate of biotransformation of PCBs are: the number of chlorines on the biphenyl nucleus, the position of these chlorines and the animal species. In general, as the number of chlorines increase and as the number of unsubstituted, adjacent carbon atoms decrease, the rate of cytochrome P-450 catalyzed hydroxylation of PCBs decreases. Evidence suggests that PCBs are hydroxylated via an arene-oxide intermediate, although other mechanisms may also be operative. The reactive arene oxides formed during biotransformation can bind covalently to tissue macromolecules and/or conjugate with glutathione. Derivatives of glutathione conjugates are major excretion products of PCBs as are glucuronides of the hydroxylated products. The species’ differences in the rate of metabolism of PCBs can be related, at least in part, to differences in the basal levels of particular isozymes of cytochrome P-450 present in liver. The dog, which eliminates PCBs more rapidly than other species, possesses higher levels of a constitutive isozyme of cytochrome P-450 with activity towards the slowly metabolized, bioaccumulated, 2,2′,4,4′,5,5′-hexachlorobiphenyl. Future studies will determine the factors that regulate the activity of this particular isozyme as well as determine its activity toward other PCBs.

Keywords

Hepatic Microsome Tetrahedral Intermediate Aromatic Hydroxylation Arene Oxide Mixed Function Oxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

245-HCB

2,2′,4,4′,5,5′-hexachlorobiphenyl

236-HCB

2,2′,3,3′,6,6′-hexachlorobiphenyl

246-HCB

2,2′,4,4′,6,6′-hexachlorobiphenyl

235-HCB

2,2′,3,3′,5,5′-hexachlorobiphenyl

2,5-TCB

2,2′,4,4′-tetrachlorobiphenyl

4-DCB

4,4′-dichlorobiphenyl

P-450

cytochrome P-450

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weltman RH, Norback DH (1979) Toxicol. Appl. Pharmacol. 48:A181Google Scholar
  2. 2.
    Weltman RH, Norback DH (1983) Toxicologist 3:401Google Scholar
  3. 3.
    Allen JR, Norback DH (1977) In: Hiatt HH, Watson JD, Winsten JA (eds) Incidence of Cancer in Humans. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p 173Google Scholar
  4. 4.
    Wyndham C, Devenish J, Safe S (1976) Res. Commun. Chem. Pathol. Pharmacol. 15:563Google Scholar
  5. 5.
    Wong A, Basrur PK, Safe S (1979) Res. Commun. Chem. Pathol. Pharmacol. 24:543Google Scholar
  6. 6.
    Bergman A, Brandt I, Jansson B (1979) Toxicol. Appl. Pharmacol. 48:213CrossRefGoogle Scholar
  7. 7.
    Shigematsu N, Ishimura S, Saito R, Ikeda T, Matsuba K, Sugiyama K, Masuda Y (1978) Environ. Res. 16:72CrossRefGoogle Scholar
  8. 8.
    Warshaw R, Fischbein A, Thornton J, Miller A, Selikoff IJ (1979) Ann N.Y. Acad. Sci. 320:277Google Scholar
  9. 9.
    Bakke JE, Bergman AL, Larsen GL (1982) Science 217:645CrossRefGoogle Scholar
  10. 10.
    Matthews HB, Dedrick RL (1984) Ann. Rev. Pharmacol. Toxicol. 24:85CrossRefGoogle Scholar
  11. 11.
    Matthews HB, Anderson MW (1975) Drug Metab. Dispos. 3:371Google Scholar
  12. 12.
    Sipes IG, Slocumb ML, Perry DF, Carter DE (1982) Toxicol. Appl. Pharmacol. 65:264CrossRefGoogle Scholar
  13. 13.
    Sundstrom G, Hutzinger O, Safe S (1976) Chemosphere 5:267CrossRefGoogle Scholar
  14. 14.
    Lutz RJ, Dedrick RL, Matthews HB, Eling TE, Anderson MW (1977) Drug Metab. Dispos. 5:386Google Scholar
  15. 15.
    Kato S, McKinney JD, Matthews HB (1980) Toxicol. Appl. Pharmacol. 53:386CrossRefGoogle Scholar
  16. 16.
    Sipes IG, McKelvie DH, Collins R (1979) Toxicol. Appl. Pharmacol. 48:A155Google Scholar
  17. 17.
    Sipes IG, Slocumb ML, Perry DF, Carter DE (1980) Toxicol. Appl. Pharmacol. 55:554CrossRefGoogle Scholar
  18. 18.
    Sipes IG, Slocumb ML, Chen H-SG, Carter DE (1982) Toxicol. Appl. Pharmacol. 62:317CrossRefGoogle Scholar
  19. 19.
    Grant DL, Phillips WEJ, Villeneuve DC (1971) Bull. Environ. Contam. Toxicol. 6:102CrossRefGoogle Scholar
  20. 20.
    Kennedy MW, Carpenter NK, Dymerski PP, Adams SM, Kaminsky LS (1980) Biochem. Pharmacol. 29:727CrossRefGoogle Scholar
  21. 21.
    Kennedy MW, Carpenter NK, Dymerski PP, Kaminsky LS (1981) Biochem. Pharmacol. 30:577CrossRefGoogle Scholar
  22. 22.
    Kaminsky LS, Kennedy MW, Adams SM, Guengerich FP (1981) Biochem. 20:7379CrossRefGoogle Scholar
  23. 23.
    Schnellmann RG, Volp RF, Putnam CW, Sipes IG (1984) Biochem. Pharmacol. 33:3503CrossRefGoogle Scholar
  24. 24.
    Daly JW, Jerina DM, Witkop B (1972) Experientia 28:1129CrossRefGoogle Scholar
  25. 25.
    Gardner AM, Chen JR, Roach JAG, Ragelis EP (1973) Biochem. Biophys. Res. Commun. 55:1377CrossRefGoogle Scholar
  26. 26.
    Safe S, Hutzinger O, Jones D (1975) J. Agr. Food Chem. 23:851CrossRefGoogle Scholar
  27. 27.
    Forgue ST, Preston BD, Hargraves WA, Reich IL, Allen JR (1979) Biochem. Biophys. Res. Commun.91:475CrossRefGoogle Scholar
  28. 28.
    Forgue ST, Allen JR (1982) Chem.-Biol. Interact. 40:233CrossRefGoogle Scholar
  29. 29.
    Selander HG, Jerina DM, Piccolo DE, Berchtold GA (1975) J. Am. Chem. Soc. 97:4428CrossRefGoogle Scholar
  30. 30.
    Selander HG, Jerina DM, Daly JW (1975) Arch. Biochem. Biophys. 168:309CrossRefGoogle Scholar
  31. 31.
    Preston BD, Miller JA, Miller EC (1983) J. Biol. Chem. 258:8304Google Scholar
  32. 32.
    Tomaszewski JE, Jerina DM, Daly JW (1975) Biochem. 14:2024CrossRefGoogle Scholar
  33. 33.
    Billings RE, McMahon RE (1978) Mol. Pharmacol. 14:145Google Scholar
  34. 34.
    Swinney DC, Howald WN, Trager WF (1984) Biochem. Biophys. Res. Commun. 118:867CrossRefGoogle Scholar
  35. 35.
    Miller RE, Guengerich FP (1982) Biochem. 21:1090CrossRefGoogle Scholar
  36. 36.
    Burka LT, Plucinski TM, Macdonald TL (1983) Proc. Natl. Acad. Sci. 80:6680CrossRefGoogle Scholar
  37. 37.
    Hanzlik RP, Hogberg K, Judson CM (1984) Biochem. 23:3048CrossRefGoogle Scholar
  38. 38.
    Schnellmann RG, Sipes IG (1984) Toxicologist 4:95Google Scholar
  39. 39.
    Duignan DB, Sipes IG, Leonard TB, Halpert JR (Submitted for publication)Google Scholar
  40. 40.
    Morales NM, Matthews HB (1979) Chem.-Biol. Interact. 27:99CrossRefGoogle Scholar
  41. 41.
    Hesse S, Metzger M, Wolff T (1978) Chem. Biol. Interact. 20:355CrossRefGoogle Scholar
  42. 42.
    Shimada T, Sato R (1980) Toxicol. Appl. Pharmacol. 55:490CrossRefGoogle Scholar
  43. 43.
    Schnellmann RG, Putnam CW, Sipes IG (1983) Biochem. Pharmacol. 32:3233CrossRefGoogle Scholar
  44. 44.
    Shimada T, Sawabe Y (1983) Toxicol. Appl. Pharmacol. 70:486CrossRefGoogle Scholar
  45. 45.
    Block WD, Cornish HH (1959) J. Biol. Chem. 234:3301Google Scholar
  46. 46.
    Norback DH, Mack E, Reddy G, Britt J, Hsia MT (1981) Res. Commun. Chem. Pathol. Pharmacol. 32:71Google Scholar
  47. 47.
    Shimada T, Sato R (1980) Toxicol. Appl. Pharmacol. 55:490CrossRefGoogle Scholar
  48. 48.
    Mio T, Sumino K (1985) Env. Hlth. Perspect. 59:129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, College of PharmacyUniversity of ArizonaTusconUSA
  2. 2.Department of Physiology and Pharmacology, College of Veterinary MedicineUniversity of GeorgiaAthensUSA

Personalised recommendations