Advertisement

An Influenza Virus Model for Trypanosoma cruziInfection: Interactive Roles for Neuraminidase and Lectin

  • M. Csete
  • B. I. Lev
  • M. E. A. Pereira
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 117)

Abstract

Trypanosoma cruzi has three distinct stages in its life cycle. The infective trypomastigote form is present in the feces of the insect vector (reduviid bug) and circulates in the blood stream of an infected host. This form can invade host cells (particularly of muscle origin) and intracellularly transforms into the multi-plying form or amastigote. Amastigotes transform into trypomastigotes which burst out of the host cells and circulate in the blood stream, where the insect vector may ingest the parasite as part of a blood meal. In the insect gut, trypo-mastigotes transform into epimastigotes and again back into trypomastigotes at the distal end of the insect gastrointestinal tract.

Keywords

Sialic Acid Trypanosoma Cruzi Alternative Complement Pathway Neuraminidase Treatment Neuraminidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade ZA (1983) Mechanisms of myocardial damage in T. cruzi infection. In: „Cytopathology of Parasitic Disease”, Pitman book, London, Ciba Foundation Symposium 99, p 214–233Google Scholar
  2. Cardoso JE, Brener Z (1980) Hematologic changes in mice experimentally infected with T. cruzi. Mem Inst Oswaldo Cruz 75: 97PubMedCrossRefGoogle Scholar
  3. Carroll SM, Higa HH, Paulson JC (1981) Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. J Biol Chem 256: 8357PubMedGoogle Scholar
  4. Choi S-I, Simone JV, Journey LJ (1972) Neuraminidase-induced thrombocytopenia in rats. Br J Haematol 22: 93PubMedCrossRefGoogle Scholar
  5. Colman PM, Varghese JN, Laver WG (1980) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303: 41CrossRefGoogle Scholar
  6. Corfield AP, Higa H, Paulson JC, Schauer R (1983) The specificity of viral and bacterial sialidases for a-(2–3)- and α-(2–6)-linked sialic acids in glycoproteins. Biochim Biophys Acta 744: 21CrossRefGoogle Scholar
  7. Cossio PM, Diez C, Szarfman A (1974) Chagasic cardiomyopathy. Demonstration of a serum gamma globulin factor which reacts with endocardium and vascular structures. Circulation 49: 13Google Scholar
  8. Crane MS, Dvorak JA (1982) Influence of monosaccharides on the infection of vertebrate cells by Trypanosoma cruzi and Toxoplasma gondii. Mol Biochem Parasitol 5: 333PubMedCrossRefGoogle Scholar
  9. Dvorak J A (1977) Host parasite relationships at the cellular level in Trypanosoma cruzi infections. PAHO Scientific Publications, no 347, pp 1–10Google Scholar
  10. Esievo KAN, Saror DI, Ilemobode AA, Hallaway MH (1982) Variation in erythrocyte surface and free serum sialic acid concentrations during experimental Trypanosoma vivax infection in cattle. Res Vet Sci 32:lGoogle Scholar
  11. Fearon DT (1978) Regulation by membrane sialic acid of beta lH-dependent decay dissociation of amplification C3 convertase of the alternative complement pathway. Proc Natl Acad Sci USA 75: 1971PubMedCrossRefGoogle Scholar
  12. Frank JS, Langer GA, Nudd LM, Seraydarian K (1977) The myocardial cell surface, its biochemistry, and the effect of sialic acid and calcium removal on its structure and cellular ionic exchange. Circ Res 41: 702PubMedGoogle Scholar
  13. Gorog P, Schraufstatter I, Born GVR (1972) Effect of removing sialic acids from endothelium on the adherence of circulating platelets in arteries in vivo. Proc R Soc Lond [Biol] 214: 471CrossRefGoogle Scholar
  14. Gottschalk A (1972) (ed) Glycoproteins: their composition, structure and function. Elsevier, New YorkGoogle Scholar
  15. Greenberg JP, Packham MA, Guccione MA, Rand ML, Reimers H-J, Mustard JF (1979) Survival of rabbit platelets treated in vitro with chymotrypsin, plasmin, trypsin, or neuraminidase. Blood 53: 916PubMedGoogle Scholar
  16. Hatcher FM, Kuhn RE (1982) Destruction of Trypanosoma cruzi by natural killer cells. Science 218: 295PubMedCrossRefGoogle Scholar
  17. Huang RT, Rott R, Wahn K, Klenk HD, Kohama R (1980) The function of the neuraminidase in membrane fusion induced by myxovirus. Virology 107: 313PubMedCrossRefGoogle Scholar
  18. Jancik JM, Schauer R, Andres KH, During M von (1978) Sequestration of neuraminidase-treated erythrocytes: studies on its topographic, morphologic and immunologic aspects. Cell Tissue Res 186: 209CrossRefGoogle Scholar
  19. Jungery M, Boyle D, Patel T, Pasvol G, Weatherall DJ (1983) Lectin-like polypeptides of P. falci-parum bind to red cell sialoglycoproteins. Nature 301: 704PubMedCrossRefGoogle Scholar
  20. Khoury EL, Ritacco V, Cossio PM, Laguens RP, Szarfman A, Diez C, Arana RM (1979) Circulating antibodies to peripheral nerve in American trypanosomiasis ( Chagas’ disease ). Clin Exp Immunol 36: 8Google Scholar
  21. Kilbourne ED (1975) The influenza viruses and influenza. Academic, New YorkGoogle Scholar
  22. Köberle F (1974) Pathogenesis of Chagas’ disease. In: Trypanosomiasis and leishmaniasis with special reference to Chagas’ disease. Ciba Foundation Symposium 20, p 137–158Google Scholar
  23. Melo R, Brener Z (1978) Tissue tropism of different Trypanosoma cruzi strains. J Parasitol 64: 475PubMedCrossRefGoogle Scholar
  24. Miller LH, Mason SJ, Dvorak J A (1975) Erythrocyte receptors for ( Plasmodium knowlesi) malaria: Duffy blood group determinants. Science 189: 561PubMedCrossRefGoogle Scholar
  25. Miller LH, Haynes JD, McAuliffe FM (1977) Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi. J Exp Med 146: 277PubMedCrossRefGoogle Scholar
  26. Nogueira N, Chaplan S, Cohn Z (1980) Trypanosoma cruzi: factors modifying ingestion and fate of blood form trypomastigotes. J Exp Med 52: 447CrossRefGoogle Scholar
  27. Nogueira N, Chaplan S, Tydings JD, Unkeless J, Cohn Z (1981) Trypanosoma cruzi: surface antigens of blood and culture forms. J Exp Med 153: 629PubMedCrossRefGoogle Scholar
  28. Pasvol G, Wainscoat JS, Weatherall DJ (1982) Erythrocytes deficient in glycophorin resist invasion by the malarial parasite Plasmodium falciparum. Nature 297: 64PubMedCrossRefGoogle Scholar
  29. Pereira MEA (1983) A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219: 1444PubMedCrossRefGoogle Scholar
  30. Pereira MEA (1983 a) A rapid and sensitive assay for neuraminidase using peanut lectin hemagglutinin. Applications to Vibrio cholera and Trypanosoma cruzi. J Immunol Methods 63 (1): 25–34PubMedCrossRefGoogle Scholar
  31. Pereira MEA, Villalta MALF, Andrade AFB (1980) Lectin receptors as markers for Trypanosoma cruzi. J Exp Med 152: 1375PubMedCrossRefGoogle Scholar
  32. Ribeiro dos Santos R, Hudson L (1980) Trypanosoma cruzi: immunological consequences of parasite modification of host cells. Clin Exp Immunol 40: 36Google Scholar
  33. Rodriguez-Iturbe B, Katiyar VN, Coello J (1981) Neuraminidase activity and free sialic acid levels in the serum of patients with acute poststreptococcal glomerulonephritis. N Engl J Med 304: 1506PubMedCrossRefGoogle Scholar
  34. Rosenberg A, Schengrund C-L (1976) (eds) Biological roles of sialic acid. Plenum, New YorkGoogle Scholar
  35. Snary D, Hudson L (1979) Trypanosoma cruzi: cell surface proteins: identification of one major glycoprotein. FEBS Lett 100: 166PubMedCrossRefGoogle Scholar
  36. Soupart P, Clewe TH (1975) Sperm penetration of rabbit zona pellucida inhibited by treatment of ova with neuraminidase. Fertil Steril 16: 677Google Scholar
  37. Suzuki T, Takauji M, Nagai T (1980) Distribution of sialic acid in frog skeletal muscle and effect of neuraminidase on Ca uptake and ATPase activity of sarcoplasmic reticulum. Jpn J Physiol 30: 61PubMedCrossRefGoogle Scholar
  38. Vierbuchen M, Klein PJ (1983) Histochemical demonstration of neuraminidase effects in pneumococcal meningitis. Lab Invest 48: 181PubMedGoogle Scholar
  39. Weiss MW, Oppenheim JD, Vanderberg JP (1981) Plasmodium falciparum: assay in vitro for inhibitors of merozoite penetration of erythrocytes. Exp Parasitol 51: 400PubMedCrossRefGoogle Scholar
  40. Wesemann W, Zilliken F (1968) Receptors of neurotransmitters. II. Sialic acid metabolism and the serotonin induced contraction of smooth muscle. Z Physiol Chem 349: 823CrossRefGoogle Scholar
  41. Wood JN, Hudson L, Jessell TM, Yamamoto M (1982) A monoclonal antibody defining antigenic determinants on subpopulations of mammalian neurones and Trypanosoma cruzi parasites. Nature 296: 34PubMedCrossRefGoogle Scholar
  42. Woodruff JJ, Katz M, Lucas LE, Stamper HB Jr (1977) An in vitro model of lymphocyte homing. II. Membrane and cytoplasmic events involved in lymphocyte adherence to specialized high- endothelial venules of lymph nodes. J Immunol 119: 1603PubMedGoogle Scholar
  43. Woods WT, Imamura K, James TN (1982) Electrophysiological and electron microscopic correlations concerning the effects of neuraminidase on canine heart cells. Circ Res 50: 228PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • M. Csete
    • 1
  • B. I. Lev
    • 1
  • M. E. A. Pereira
    • 1
  1. 1.Division of Geographic MedicineTufts University Medical SchoolBostonUSA

Personalised recommendations