Advertisement

Trypanosoma cruzi: Interaction with Host Cells

  • B. Zingales
  • W. Colli
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 117)

Abstract

The flagellate protozoan Trypanosoma cruzi (order Kinetoplastida) is the aetiological agent of Chagas’ disease. The disease, predominantly rural, affects approximately 10–12 million people living in Latin America. Thus, from the medical point of view, T. cruzi is the most important trypanosomatid in the New World.

Keywords

Sialic Acid Vero Cell Wheat Germ Agglutinin Trypanosoma Cruzi Chagasic Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcantara A, Brener Z (1978) The in vitro interaction of Trypanosoma cruzi blood stream forms and mouse peritoneal macrophages. Acta Trop 33: 209–219Google Scholar
  2. Alcantara A, Brener Z (1980) Trypanosoma cruzi: role of macrophage membrane components in the phagocytosis of blood stream forms. Exp Parasitol 50: 1–6PubMedCrossRefGoogle Scholar
  3. Alexander J (1975) Effect of the antiphagocytic agent cytochalasin B on macrophage invasion by Leishmania mexicana promastigotes and Trypanosoma cruzi epimastigotes. J Protozool 22: 237–240PubMedGoogle Scholar
  4. Alves MJM, Colli W (1974) Agglutination of Trypanosoma cruzi by concanavalin A. J Protozool 21: 575–578PubMedGoogle Scholar
  5. Alves MJM, Colli W (1975) Glycoproteins from Trypanosoma cruzi: partial purification by gel chromatography. FEBS Lett 52: 188–190.PubMedCrossRefGoogle Scholar
  6. Alves MJM, da Silveira JF, De Paiva CHR, Tanaka CT, Colli W (1979) Evidence for the plasma membrane localization of carbohydrate-containing macromolecules from epimastigote form of Trypanosoma cruzi. FEBS Lett 99: 81–85PubMedCrossRefGoogle Scholar
  7. Andrews NW, Colli W (1981) Interiorization of Trypanosoma cruzi in cultured mammalian cells. Inhibition by N-acetyl-D-glucosamine. In: VIII Reunião Anual Pesquisa Bãsica em Doenca de Chagas, Caxambu, Brasil, p 81Google Scholar
  8. Andrews NW, Colli W (1982) Adhesion and interiorization of Trypanosoma cruzi in mammalian cells. J Protozool 29: 264–269PubMedGoogle Scholar
  9. Andrews NW, Katzin AM, Colli W (1984) Mapping of surface glycoproteins of Trypanosoma cruzi by two-dimensional electrophoresis. A correlation with the cell invasion capacity. Eur J Biochem 140: 599–604PubMedCrossRefGoogle Scholar
  10. Andrews NW, Alves MJM, Schumachier RI, Colli W (1985) Trypanosoma cruzi: protection in mice immunized with 8-methoxy-psoralen inactivated trypomastigotes. Exp Parasitol (to be published).Google Scholar
  11. Araujo FG, Remington JS (1981) Characterization of stages and strains of Trypanosoma cruzi by analysis of cell membrane components. J Immunol 127: 855–859PubMedGoogle Scholar
  12. Araujo FG, Handman E, Remington JS (1980) Binding of lectins to the cell surface of Trypanosoma cruzi. J Protozool 27: 397–400PubMedGoogle Scholar
  13. Berteiii MSM, Brener Z (1980) Infection of tissue culture cells with blood stream trypomastigotes of Trypanosoma cruzi. J Parasitol 66: 992–997CrossRefGoogle Scholar
  14. Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27: 347–383PubMedCrossRefGoogle Scholar
  15. Brener Z (1977) Intraspecific variations in Trypanosoma cruzi: two types of parasite populations presenting distinct characteristics. PAHO Sei Publ 347: 11–21Google Scholar
  16. Brener Z (1980) Immunity to Trypanosoma cruzi. Adv Parasitol 18: 247–292PubMedCrossRefGoogle Scholar
  17. Brener Z (1983) Laboratory-acquired Chagas’ disease: an endemic disease among parasitologists? In: Morel CH (ed) Genes and antigens of parasites - a laboratory manual. 2nd ed. Fiocruz, Rio de Janeiro, pp 3–9Google Scholar
  18. Brener Z, Camargo EP (1982) Perspectives of vaccination in Chagas’ disease. Pont Acad Sei Scripta Varia 47: 145–168Google Scholar
  19. Budzko DB, Pizzimenti MC, Kierszenbaum F (1975) Effects of complement depletion in experimental Chagas’ disease: immune lysis of virulent blood forms of Trypanosoma cruzi. Infect Immun 11: 86–90PubMedGoogle Scholar
  20. Chiari E (1981) Diferenciacão do Trypanosoma cruzi em cultura. Thesis, University of Minas GeraisGoogle Scholar
  21. Chiari E, De Souza W, Romanha AJ, Chiari CA, Brener Z (1978) Concanavalin A receptors on the cell membrane of Trypanosoma cruzi. Acta Trop 35: 113–121PubMedGoogle Scholar
  22. Colli W (1979) Chagas– disease. In: Wallach DFH (ed) Colli W, pp 131–153 ( Tropical research Series )Google Scholar
  23. Colli W, Andrews NW, Zingales B (1981) Surface determinants in American trypanosomes. In: Schweiger HG (ed) International cell biology 1980/1981. Springer, Berlin Heidelberg New York, pp 401–410Google Scholar
  24. Colli W, Katzin AM, Andrews NW, Kuwajima VY, Gon£alves MF, Abuin G, Alves MJM, Zingales B (1984) Perspectives of vaccination against Chagas’ disease through biotechnology. I. Definition of relevant antigens possibly involved in parasite-host cell interaction. In: Bell R, Torrigiani G (eds) New approaches to vaccine development. Schwabe, Basel, pp 418–441Google Scholar
  25. Confalonieri AN, Martin NF, Zingales B, Colli W, Lederkremer RM (1983) Sialoglycolipids in Trypanosoma cruzi. Biochem Intern 7: 215–222Google Scholar
  26. Crane MS J, Dvorak JA (1982) Influence of monosaccharides on the infection of vertebrate cells by Trypanosoma cruzi and Toxoplasma gondii. Mol Biochem Parasitol 5: 333–341PubMedCrossRefGoogle Scholar
  27. Deane MP, Souza MA, Pereira NM, Gon9alves AM, Momen H, Morel CM (1984) Trypanosoma cruzi: inoculation schedules and re-isolation methods select individual strains from doubly infected mice, as demonstrated by schizodeme and zymodeme analyses. J Protozool 31: 276–280Google Scholar
  28. De Souza W (1983) Cell biology of Trypanosoma cruzi. Int Rev Cytol 86: 197–283Google Scholar
  29. De Souza W, Martinez-Palomo A, Gonzales-Robles A (1978) The cell surface of Trypanosoma cruzi. J Cell Sei 33: 285–299Google Scholar
  30. Dusanic DG (1980) “In vitro” production of metacyclic trypomastigotes of Trypanosoma cruzi. J Parasitol 66:1046–1049Google Scholar
  31. Dvorak JA (1975) New in vitro approach to quantitation of Trypanosoma cruzi-vertebrate cell interactions. In: New approaches in American trypanosomiasis research. PAHO, Sei Publ n° 318: 109–120Google Scholar
  32. Dvorak JA, Crane MS J (1981) Vertebrate cell cycle modulates infection by protozoan parasites. Science 214: 1034–1036PubMedCrossRefGoogle Scholar
  33. Dvorak JA, Howe CL (1976) The attraction of Trypanosoma cruzi to vertebrate cells in vitro. J Protozool 23: 534–537PubMedGoogle Scholar
  34. Dvorak J A, Hyde TP (1973) Trypanosoma cruzi: interaction with vertebrate cells in vitro. I. Individual interactions at the cellular and subcellular levels. Exp Parasitol 34: 268–283PubMedCrossRefGoogle Scholar
  35. Goldenberg S, Contreras VT, Salles JM, Franco MPAL, Bonaldo MC, Valle D, Gonalves AM, Morel CM (1984) Perspectives of vaccination against Chagas’ disease through biotechnology. II. Gene expression in Trypanosoma cruzi trypomastigotes and cell-free translation of mRNAs coding for relevant surface antigens. In: Bell R, Torrigiani G (eds) New approaches to vaccine development. Schwabe, Basel, pp 442–459Google Scholar
  36. Gonlalves AM, Chiari E, Deane MP, Carneiro M, Romanha AJ, Morel CM (1984) Schizodeme characterization of natural and artificial populations of Trypanosoma cruzi as a tool in the study of Chagas’ disease. In: Newton BN, Michal F (eds) New approaches to the identification of parasites and their vectors. Schwabe, Basel, pp 253–275Google Scholar
  37. Gutteridge WE, Cover B, Gaborak M (1978) Isolation of blood and intracellular forms of Trypanosoma cruzi from rats and other rodents and preliminary studies of their metabolism. Parasitology 76: 153–176CrossRefGoogle Scholar
  38. Henriquez D, Piras R, Piras MM (1981a) Surface membrane interactions of Trypanosoma cruzi and Vero cells: dissociation of the adhesion and penetration steps. J Cell Biol 91: 108aGoogle Scholar
  39. Henriquez D, Piras R, Piras MM (1981 b) The effect of surface membrane modification of fibroblastic cells on the entry process of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol 2: 359–366Google Scholar
  40. Hoare CA (1972) The trypanosomes of mammals. Blackwell Sci, Oxford, p 749Google Scholar
  41. Hudson L, Snary D, Morgan SJ (1984) Trypanosoma cruzi: continuous cultivation with murine cell lines. Parasitol 88: 283–294Google Scholar
  42. Jones TC, Yeh S, Hirsch JG (1972) The interaction between Toxoplasma gondii and mammalian cells. I. Mechanism of entry and intracellular fate of the parasite. J Exp Med 136: 1157–1172PubMedCrossRefGoogle Scholar
  43. Katzin AM, Colli W (1983) Lectin receptors in Trypanosoma cruzi, an N-acetyl-D-glucosamine- containing surface glycoprotein specific for the trypomastigote stage. Biochim Biophys Acta 727: 403–411PubMedCrossRefGoogle Scholar
  44. Kierszenbaum F, Ivanyi J, Budzko DB (1976) Mechanism of natural resistance to trypanosomal infection. Role of complement in avian resistance to Trypanosoma cruzi infection. Immunology 30: 1–6PubMedGoogle Scholar
  45. Kipnis TL, Calich VLG, Dias da Silva W (1979) Active entry of blood stream forms of Trypanosoma cruzi into macrophages. Parasitology 78: 89–99PubMedCrossRefGoogle Scholar
  46. Kipnis TL, David JR, Alper CA, Sher A, Dias da Silva W (1981) Enzymatic treatment transforms trypomastigotes of Trypanosoma cruzi into activators of the alternative complement pathway and potentiates their uptake by macrophages. Proc Natl Acad Sci USA 78: 602–605PubMedCrossRefGoogle Scholar
  47. Kloetzel J, Deane MP (1977) Presence of immunoglobulins on the surface of blood stream of Trypanosoma cruzi. Capping during differentiation in culture. Rev Inst Med Trop Sao Paulo 19: 397–402PubMedGoogle Scholar
  48. Kramer RH, Canellakis ES (1979) The surface glycoproteins of the HeLa cell. Internalization of wheat germ agglutinin-receptors. Biochim Biophys Acta 551: 328–348PubMedGoogle Scholar
  49. Krettli AU, Brener Z (1976) Protective effects of specific antibodies in Trypanosoma cruzi infections. J Immunol 116: 755–760PubMedGoogle Scholar
  50. Krettli AU, Brener Z (1982) Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies. J Immunol 128: 2009–2012PubMedGoogle Scholar
  51. Krettli AU, Eisen H (1980) Fabulation in Trypanosoma cruzi: a mechanism of escape from the host immune system. VII Reuniáo Anual Pesquisa Básica em Doen£a de Chagas, Caxambu, Brasil, pi 58Google Scholar
  52. Kuwajima VY, Colli W (1983) Fatores que determinam a interiorizado de Trypanosoma cruzi em células de mamífero. X Reuniáo Anual de Pesquisa Básica em Doen9a de Chagas, Caxambu, Brasil, BQ59Google Scholar
  53. Lederkremer RM, Alves MJM, Fonseca GC, Colli W (1976) A lipopeptidophosphoglycan from Trypanosoma cruzi (epimastigote). Isolation, purification and carbohydrate composition. Biochem Biophys Acta 444: 85–96PubMedGoogle Scholar
  54. Lederkremer RM, Tanaka CT, Alves MJM, Colli W (1977) Lipopeptidophosphoglycan from Trypanosoma cruzi. Amide and ester-linked fatty acids. Eur J Biochem 74: 263–267PubMedCrossRefGoogle Scholar
  55. Lederkremer RM, Zingales B, Confalionieri AN, Conto AS, Martin NF, Colli W (1985) In vivo incorporation of palmitic acid and galactose in glycolipids of Trypanosoma cruzi epimastigotes. Biochem Int 10: 79–88PubMedGoogle Scholar
  56. Lima MF, Kierszenbaum F (1982) Biochemical requirements for intracellular invasion by Trypanosoma cruzi: protein synthesis. J Protozool 29: 566–579PubMedGoogle Scholar
  57. Meirelles MNL, Araujo Jorge TC, De Souza W (1982 a) Interaction of Trypanosoma cruzi with macrophages in vitro: dissociation of the attachment and internalization phases by low temperature and cytochalasin B. Z Parasitenkd 68: 7–14Google Scholar
  58. Meirelles MNL, Chiari E, De Souza W (1982b) Interaction of blood stream, tissue culture-derived and axenic culture-derived trypomastigotes of Trypanosoma cruzi with macrophages. Acta Trop 39: 195–205PubMedGoogle Scholar
  59. Meirelles MNL, Martinez-Palomo A, Souto-Padron T, De Souza W (1983) Participation of concana- valin A binding sites in the interaction between Trypanosoma cruzi and macrophages. J Cell Sci 62: 287–299PubMedGoogle Scholar
  60. Meyer H (1942) Culturas de tecido nervoso infectadas por Schizotrypanum cruzi. Anais Acad Brasil Cien 14: 253–256Google Scholar
  61. Meyer H, Xavier de Oliveira F (1948) Cultivation of Trypanosoma cruzi in tissue culture: a four-year study. Parasitology 39: 91–94Google Scholar
  62. Milder R, Kloetzel J, Deane MP (1977) Observation on the interaction of peritoneal macrophages with Trypanosoma cruzi. II. Intracellular fate of blood stream forms. Rev Inst Med Trop Sao Paulo 19: 313–322PubMedGoogle Scholar
  63. Miles MA, Souza A, Povoa M, Shaw JJ, Lainson R, Toye PJ (1978) Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas’ disease in Amazonian Brazil. Nature 272: 819–821PubMedCrossRefGoogle Scholar
  64. Miles MA, Povoa MM, Prata A, Cedillos RA, De Souza AA, Macedo V (1981) Do radically dissimilar Trypanosoma cruzi strains (zymodemes) cause Venezuelan and Brazilian forms of Chagas’ disease? Lancet 20: 1338–1340CrossRefGoogle Scholar
  65. Morel C, Chiari E, Camargo EP, Mattei DM, Romanha AJ, Simpson L (1980) Strains and clones of Trypanosoma cruzi can be characterized by pattern of restriction endonuclease products of kinetoplast DNA minicircles. Proc Natl Acad Sci USA 77: 6810–6814PubMedCrossRefGoogle Scholar
  66. Muniz J, Borriello A (1945) Estudo sobre a acão litica de diferentes soros sobre as formas de cultura e sanguicolas de Schizotrypanum cruzi. Rev Bras Biol 5: 563–572PubMedGoogle Scholar
  67. Nicolson GL (1976) Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim Biophys Acta 457: 57–108PubMedGoogle Scholar
  68. Nogueira N (1983) Host and parasite factors affecting the invasion of mononuclear phagocytes by Trypanosoma cruzi. In: Cytopathology of parasitic disease. Pitman, London, pp 52–73 (Ciba foundation symposium 99)Google Scholar
  69. Nogueira N, Cohn Z (1976) Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells. J Exp Med 143: 1402–1420Google Scholar
  70. Nogueira N, Bianco C, Cohn Z (1975) Studies of the selective lysis and purification of Trypanosoma cruzi. J Exp Med 142: 224–229PubMedCrossRefGoogle Scholar
  71. Nogueira N, Chaplan S, Cohn Z (1980) Trypanosoma cruzi: factors modifying ingestion and fate of bloodform trypomastigotes. J Exp Med 152: 447–451Google Scholar
  72. Nogueira N, Chaplan S, Tydings JD, Unkeless J, Cohn Z (1981) Trypanosoma cruzi: surface antigens of blood and culture forms. J Exp Med 153: 629–639PubMedCrossRefGoogle Scholar
  73. Nogueira N, Unkeless J, Cohn Z (1982) Specific glycoprotein antigens on the surface of insect and mammalian stages of Trypanosoma cruzi. Proc Natl Acad Sci USA 79: 1259–1263PubMedCrossRefGoogle Scholar
  74. Pan SC (1978) Trypanosoma cruzi: intracellular stages grown in cell-free medium at 37 °C. Exp Parasitol 42:215–224Google Scholar
  75. Pereira MEA (1983) A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219: 1444–1446PubMedCrossRefGoogle Scholar
  76. Pereira MEA, Loures MA, Villalta F, Andrade AFB (1980) Lectin receptors as markers for Trypanosoma cruzi. J Exp Med 152: 1375–1392PubMedCrossRefGoogle Scholar
  77. Phillips DR, Gartner TK (1980) Cell recognition systems in eukaryotic cells. In: Cuatrecasas P, Greaves MF (eds) Receptors and recognition, Chapman Hall, London, vol 6, series B, pp 400–438Google Scholar
  78. Piras R, Henriquez D, Piras MM (1980) Studies on host-parasite interactions: role of fibroblastic cell surface functions and Trypanosoma cruzi forms in the infective process. In: van den Bosche H (ed) Host-invader interplay. Elsevier/North-Holland Biomedical, Amsterdam, pp 131–134Google Scholar
  79. Piras MM, Piras R, Henriquez D (1982 a) Changes in morphology and infectivity of cell culture- derived trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol 6: 67–81PubMedCrossRefGoogle Scholar
  80. Piras R, Piras MM, Henriquez D (1982b) The effect of inhibitors of macromolecular biosynthesis on the in vitro infectivity and morphology of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol 6: 83–92PubMedCrossRefGoogle Scholar
  81. Piras R, Piras MM, Henriquez D (1983) Trypanosoma cruzi-fibroblastic cell interaction necessary for cellular invasion. In: Cytopathology of parasitic disease. Pitman, London, pp 31–55 (Ciba foundation symposium 99)Google Scholar
  82. Rabinovitch M (1967) The dissociation of the attachment and ingestion phases of phagocytosis by macrophages. Exp Cell Res 46: 19–28PubMedCrossRefGoogle Scholar
  83. Rabinovitch M (1968) Phagocytosis: the engulfment stage. Semin Hematol 5: 134–155PubMedGoogle Scholar
  84. Rangel HA, Araujo PMF, Camargo 1KB, Bonfitto M, Repka D, Sakurada JK, Atta AM (1981) Detection of a proteinase common to epimastigote, trypomastigote and amastigote of different strains of Trypanosoma cruzi. Tropenmed Parasitol 32: 87–92Google Scholar
  85. Romanha AJ, Pereira AAS, Chiari E, Dias JCP (1979 a) Isoenzyme patterns of Trypanosoma cruzi isolated from patients with Chagas’ disease. Congresso Internacional sobre Doen5a de Chagas, Rio de Janeiro (abstract 70)Google Scholar
  86. Romanha AJ, Pereira AAS, Chiari E, Kilgour V (1979 b) Isoenzyme patterns of cultured Trypanosoma cruzi: changes after prolonged subculture. Comp Biochem Physiol 62B: 139–142CrossRefGoogle Scholar
  87. Schauer R, Reuter G, Mühlpfordt H, Andrade AFB, Pereira MEA (1983) The occurrence of JV-acetyl- and 7V-glycolyl-neuraminic acid in Trypanosoma cruzi. Hoppe Seylers Z Physiol Chem 364: 1053–1057PubMedCrossRefGoogle Scholar
  88. Schmatz DM, Boltz RC, Murray PK (1983) Trypanosoma cruzi: separation of broad and slender trypomastigotes using a continuous hypaque gradient. Parasitology 87: 219–227Google Scholar
  89. Schmuñis GA, Szarfman A, Langembach T, De Souza W (1978) Induction of capping in blood-stage trypomastigotes of Trypanosoma cruzi by human anti-Trypanosoma cruzi antibodies. Infect Immun 20: 567–569PubMedGoogle Scholar
  90. Scott MT, Snary D (1979) Protective immunization of mice using cell surface glycoprotein from Trypanosoma cruzi. Nature 282: 73–74PubMedCrossRefGoogle Scholar
  91. Scott MT, Snary D (1982) II American trypanosomiasis (Chagas’ disease). In: Cohen S, Warren K (eds) Immunology of parasitic infections. Blackwell, Oxford, pp 262–298Google Scholar
  92. Sher A, Snary D (1982) Specific inhibition of the morphogenesis of Trypanosoma cruzi by a monoclonal antibody. Nature 300: 639–640PubMedCrossRefGoogle Scholar
  93. Sher A, Crane MSJ, Kirchoff LV (1983) Incubation in mice provides a signal for the differentiation of Trypanosoma cruzi epimastigotes to trypomastigotes. J Protozool 30: 278–283PubMedGoogle Scholar
  94. Silverstein SC, Steinman RM, Cohn ZA (1977) Endocytosis. Annu Rev Biochem 46:669–772PubMedCrossRefGoogle Scholar
  95. Snary D (1980) Trypanosoma cruzi: antigenic invariance of the cell surface glycoprotein. Exp Parasitol 49: 68–77PubMedCrossRefGoogle Scholar
  96. Snary D (1983) Cell surface glycoproteins of Trypanosoma cruzi: protective immunity in mice and antibody levels in human chagasic sera. Trans R Soc Trop Med Hyg 77: 126–129PubMedCrossRefGoogle Scholar
  97. Snary D, Hudson L (1979) Trypanosoma cruzi cell surface proteins: identification of one major glycoprotein. FEBS Lett 100: 166–170PubMedCrossRefGoogle Scholar
  98. Snary D, Ferguson MAJ, Scott MT, Allen AK (1981) Cell surface antigens of Trypanosoma cruzi: use of monoclonal antibodies to identify and isolate an epimastigote specific glycoprotein. Mol Biochem Parasitol 3: 343–356PubMedCrossRefGoogle Scholar
  99. Szarfman A, Queiroz T, De Souza W (1980) Mobility of concanavalin A receptors in Trypanosoma cruzi. J Parasitol 66: 1055–1057PubMedCrossRefGoogle Scholar
  100. Teixeira ARL (1977) Immunoprophylaxis against Chagas’ disease. In: Miller LH, Pino JA, McKelvey JJ Jr (eds) Immunity to blood parasites of animals and man. Plenum, New York, pp 243–284Google Scholar
  101. Villalta F, Kierszenbaum F (1982) Growth of isolated amastigotes of Trypanosoma cruzi in cell-free medium. J Protozool 29: 570–576PubMedGoogle Scholar
  102. Villalta F, Kierszenbaum F (1983) Role of cell surface mannose residues in host cell invasion by Trypanosoma cruzi. Biochim Biophys Acta 736: 39–44PubMedCrossRefGoogle Scholar
  103. Zenian A, Kierszenbaum F (1982) Inhibition of macrophage- Trypanosoma cruzi interaction by con- canavalin A and differential binding of blood stream and culture forms to the macrophage surface. J Parasitol 68: 408–415PubMedCrossRefGoogle Scholar
  104. Zingales B, Martin NF, Lederkremer RM, Colli W (1982 a) Endogenous and surface labeling of glycoconjugates from the three differentiation stages of Trypanosoma cruzi. FEBS Lett 142: 238–242PubMedCrossRefGoogle Scholar
  105. Zingales B, Andrews NW, Kuwajima VY, Colli W (1982b) Cell surface antigens of Trypanosoma cruzi: possible correlation with the interiorization process in mammalian cells. Mol Biochem Parasitol 6: 111–124PubMedCrossRefGoogle Scholar
  106. Zingales B, Abuin G, Romanha AJ, Chiari E, Colli W (1984) Surface antigens of stocks and clones of Trypanosoma cruzi isolated from humans. Acta Trop 41: 5–16PubMedGoogle Scholar
  107. Zingales B, Katzin AM, Arruda MV, Colli W (1985) Correlation of tunicamycin sensitive surface glycoproteins from Trypanosoma cruzi with parasite interiorization into mammalian cells. Mol Biochem Parasitol (to be published)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • B. Zingales
    • 1
  • W. Colli
  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloBrazil

Personalised recommendations