The Cell Surface of Trypanosoma cruzi

  • D. Snary
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 117)


The cell surface membrane of Trypanosoma cruzi must possess a number of properties in addition to those such as nutrient transport and ion balance maintenance normally associated with cell surface membranes. These extra properties will include the presence of receptors for binding and penetration of host cells, the ability to survive in the hostile environment of the insect vector’s intestinal tract and resistance to the host’s immune system. T. cruzi has a complex life cycle (Brener 1973) and the requirements of and influences upon each morphological stage are different; it is probable that these environmental and life style differences will be reflected in surface membrane properties of the cells. A number of experimental procedures have indeed shown that there are changes in surface membrane properties between stages; for example, charge differences have been detected by cationic ferritin binding (De Souza et al. 1977), differential binding of a series of lectins has been found for each stage (Pereira et al. 1980), cell surface protein and antigenic differences have been found (Snary etal. 1981; Nogueira et al. 1981) and sensitivity to complement is known to be different (Nogueira et al. 1975). The surface of the blood trypomastigote stage of T. cruzi is not, however, covered by an electron-dense protein coat of the type found in African trypanosomes such as Trypanosoma brucei, nor is there any evidence of antigenic variation during infection although antigenic differences between strains of T. cruzi have been detected (Nussenzweig and Goble 1966).


Trypanosoma Cruzi Cell Surface Glycoprotein Cell Surface Membrane African Trypanosome Carbohydrate Side Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afchain D, Fruit J, Yarzabal L, Capron A (1978) Purification of a specific antigen of Trypanosoma cruzi from culture forms. Am J Trop Med Hyg 27: 478–482PubMedGoogle Scholar
  2. Afchain D, LeRay D, Fruit J, Capron A (1979) Antigenic make-up of Trypanosoma cruzi culture forms: identification of a specific component. J Parasitol 65: 507–514PubMedCrossRefGoogle Scholar
  3. Alves MJM, Colli W (1975) Glycoproteins from Trypanosoma cruzi: partial purification by gel chromatography. FEBS Lett 52: 188–190PubMedCrossRefGoogle Scholar
  4. Alves MJM, Da Silveira JF, De Paiva CHR, Tanaka CT, Colli W (1979) Evidence for the plasma membrane localization of carbohydrate containing macromolecules from epimastigote forms of Trypanosoma cruzi. FEBS Lett 99: 81–85PubMedCrossRefGoogle Scholar
  5. Alves MJM, Aikawa M, Nussenzweig RS (1983) Monoclonal antibodies to Trypanosoma cruzi inhibit mobility and nucleic acid synthesis of culture forms. Infect Immun 39: 377–382PubMedGoogle Scholar
  6. Anthony RL, Cody TS, Constantine NT (1981) Antigenic differentiation of Trypanosoma cruzi and Trypanosoma rangeli by means of monoclonal-hybridoma antibodies. Am J Trop Med Hyg 30: 1192–1197PubMedGoogle Scholar
  7. Araujo FG, Remington JS (1981) Characterization of stages and strains of Trypanosoma cruzi by analysis of cell membrane components. J Immunol 127: 855–859PubMedGoogle Scholar
  8. Araujo FG, Sharma SD, Tsai V, Cox P, Remington JS (1982) Monoclonal antibodies to stages of Trypanosoma cruzi: characterization and use for antigen detection. Infect Immun 37: 344–349PubMedGoogle Scholar
  9. Baltz T, Duvillier G, Giroud C, Baltz D, Degand P (1983) The variant surface glycoproteins of Trypanosoma equiperdum. Identification of a phosphorylated glycopeptide as the cross-reacting antigenic determinant. FEBS Lett 158: 174–178PubMedCrossRefGoogle Scholar
  10. Basombrio MA, Besuschio S (1982) Trypanosoma cruzi culture used as vaccine to prevent chronic Chagas’ disease in mice. Infect Immun 36: 351–356PubMedGoogle Scholar
  11. Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27: 347–382PubMedCrossRefGoogle Scholar
  12. Chapman MD, Snary D, Miles MA (1984) Quantitative differences in the expression of a 72000 molecular weight cell surface glycoprotein (GP 72) in Trypanosoma cruzi zymodemes. J Immunol 132: 3149–3153PubMedGoogle Scholar
  13. Cossio PM, Diez C, Szarfman A, Kreutzer E, Candiolo B, Arana RM (1974) Chagasic cardiopathy: demonstration of a serum gamma globulin factor which reacts with endocardium and vascular structures. Circulation 49: 13–21PubMedGoogle Scholar
  14. Crane MSJ, Dvorak JA (1982) Influence of monosaccharides on the infection of vertebrate cells by Trypanosoma cruzi and Toxoplasma gondii. Mol Biochem Parasitol 5: 333–341PubMedCrossRefGoogle Scholar
  15. Da Silveira JF, Colli W (1981) Chemical composition of the plasma membrane from epimastigote forms of Trypanosoma cruzi. Biochim Biophys Acta 644: 341–350CrossRefGoogle Scholar
  16. Da Silveira JF, Abrahamsohn PA, Colli W (1979) Plasma membrane vesicles isolated from epimastigote forms of Trypanosoma cruzi. Biochim Biophys Acta 550: 222–232PubMedCrossRefGoogle Scholar
  17. Dearborn DG, Smith S, Korn ED (1976) Lipophosphonoglycan of the plasma membrane of Acanthamoeba castellanii. Inositol and phytosphingosine content and general structural features. J Biol Chem 251: 2976–2982PubMedGoogle Scholar
  18. De Lederkremer RM, Alves MJM, Fonseca GC, Colli W (1976) A lipopeptidophosphoglycan from Trypanosoma cruzi (epimastigota). Biochim Biophys Acta 444: 85–96PubMedGoogle Scholar
  19. De Lederkremer RM, Tanaka CT, Alves MJM, Colli W (1977) Lipopeptidophosphoglycan from Trypanosoma cruzi, amide and ester-linked fatty acids. Eur J Biochem 74: 263–267PubMedCrossRefGoogle Scholar
  20. De Lederkremer RM, Casal OL, Tanaka CT, Colli W (1978) Ceramide and inositol content of the lipopeptidophosphoglycan from Trypanosoma cruzi. Biochem Biophys Res Commun 85: 1268–1274PubMedCrossRefGoogle Scholar
  21. De Lederkremer RM, Casal OL, Alves MJM, Colli W (1980) Evidence for the presence of D-galactofuranose in the lipopeptidophosphoglycan from Trypanosoma cruzi. FEBS Lett 116: 25–29PubMedCrossRefGoogle Scholar
  22. De Souza W, Meyer H (1975) An electron microscopic and cytochemical study of the cell coat of Trypanosoma cruzi in tissue cultures. Z Parasitenkd 46: 179–187PubMedCrossRefGoogle Scholar
  23. De Souza W, Arguello C, Martinez-Palomo A, Trissl D, Gonzalez-Robles A, Chiari E (1977) Surface charge of Trypanosoma cruzi. Binding of cationized ferritin and measurement of cellular electro-phoretic mobility. J Protozool 24: 411–415PubMedGoogle Scholar
  24. De Souza W, Martinez-Palomo A, Gonzalez-Robles A (1978) The cell surface of Trypanosoma cruzi: cytochemistry and freeze-fracture. J Cell Sci 33: 285 - 299PubMedGoogle Scholar
  25. Ferguson MAJ (1982) Cell surface glycoconjugates of trypanosomes. PhD Thesis, University of London, LondonGoogle Scholar
  26. Ferguson MAJ, Allen AK, Snary D (1982) The detection of phosphonolipids in the protozoan Trypanosoma cruzi. Biochem J 207: 171–174PubMedGoogle Scholar
  27. Ferguson MAJ, Allen AK, Snary D (1983) Studies on the structure of a phosphoglycoprotein from the parasitic protozoan Trypanosoma cruzi. Biochem J 213: 313–319PubMedGoogle Scholar
  28. Flint JE, Schechter M, Chapman MD, Miles MA (1984) Zymodeme and species specificities of monoclonal antibodies raised against Trypanosoma cruzi. Trans R Soc Trop Med Hyg 78: 193–202PubMedCrossRefGoogle Scholar
  29. Fruit J, Afchain D, Petitprez A, Capron A (1978) Trypanosoma cruzi: location of a specific antigen on the surface of blood stream trypomastigote and culture epimastigote forms. Exp Parasitol 45: 183–189PubMedCrossRefGoogle Scholar
  30. Gottlieb M (1977) A carbohydrate-containing antigen from Trypanosoma cruzi and its detection in the circulation of infected mice. J Immunol 119: 465–470PubMedGoogle Scholar
  31. Green JR, Northcote DH (1978) The structure and function of glycoproteins synthesized during slime-polysaccharide production by membranes of the root-cap cells of maize (Zea mays). Biochem J 170: 599–608PubMedGoogle Scholar
  32. Heaney-Kieras J, Roden L, Chapman DJ (1977) The covalent linkage of protein to carbohydrate in the extracellular protein-polysaccharide from the red alga Porphyridium cruentum. Biochem J 165: 1–9PubMedGoogle Scholar
  33. Henriquez D, Piras R, Piras MM (1981) The effect of surface membrane modifications of fibroblastic cells on the entry process of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol 2: 359–366PubMedCrossRefGoogle Scholar
  34. Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50: 555–582PubMedCrossRefGoogle Scholar
  35. Itow S, Camargo EP (1977) Proteolytic activities in cell extracts of Trypanosoma cruzi. J Protozool 24: 591–595PubMedGoogle Scholar
  36. Katzin AM, Colli W (1983) Lectin receptors in Trypanosoma cruzi: an N-acetyl-D-glucosamine containing surface glycoprotein specific for the trypomastigote stage. Biochem Biophys Acta 727: 403–411PubMedCrossRefGoogle Scholar
  37. Kennedy KE, Thompson GA (1970) Phosphonolipids: localization in surface membranes of Tetrahymena. Science 168: 989–991PubMedCrossRefGoogle Scholar
  38. Khoury EL, Ritacco V, Cossio PM, Laguens RP, Szarfman A, Diez C, Arana RM (1979) Circulating antibodies to peripheral nerve in American trypanosomiasis (Chagas’ disease). Clin Exp Immunol 36: 8–15PubMedGoogle Scholar
  39. Kipnis TL, David JR, Alper CA, Sher A, Dias da Silva W (1981) Enzymic treatment transforms trypomastigotes of Trypanosoma cruzi into activators of alternative complement pathway and potentiates their uptake by macrophages. Proc Natl Acad Sci USA 75: 602–605CrossRefGoogle Scholar
  40. Klinger MM, Laine RA, Steiner SM (1981) Characterization of novel amino acid fucosides. J Biol Chem 256: 7932–7935PubMedGoogle Scholar
  41. Kornfeld R, Kornfeld S (1976) Comparative aspects of glycoprotein structure. Annu Rev Biochem 45: 217–237PubMedCrossRefGoogle Scholar
  42. Krettli AU, Brener Z (1982) Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies. J Immunol 128: 2009–2012PubMedGoogle Scholar
  43. Marcipar AJ, Lentwojt E, Segard E, Afchain D, Fruit J, Capron A (1982) Peanut agglutinin affinity chromatography of Trypanosoma cruzi glycoproteins. Parasite Immunol 4: 109–115PubMedCrossRefGoogle Scholar
  44. McHardy N (1980) Passive protection of mice against infection with Trypanosoma cruzi with plasma: the use of blood and vector bug-derived trypomastigote challenge. Parasitology 80: 471–478PubMedCrossRefGoogle Scholar
  45. Mendonca-Previato L, Gorin PAH, Braga AF, Scharfstein J, Previato JO (1983) Chemical structure and antigenic aspects of complexes obtained from epimastigotes of Trypanosoma cruzi. Biochemistry 22: 4980–4987PubMedCrossRefGoogle Scholar
  46. Miles MA (1983) The epidemiology of South American trypanosomiasis — biochemical and immunological approaches and their relevance to control. Trans R Soc Trop Med Hyg 77: 5–23PubMedCrossRefGoogle Scholar
  47. Neal RA, Johnson P (1977) Immunization against Trypanosoma cruzi using killed antigens with saponin as adjuvant. Acta Trop 34: 87–96PubMedGoogle Scholar
  48. Nogueira N, Bianco C, Cohn Z (1975) Studies on the selective lysis and purification of Trypanosoma cruzi. J Exp Med 142: 224–229PubMedCrossRefGoogle Scholar
  49. Nogueira N, Chaplan S, Tydings JD, Unkless J, Cohn Z (1981) Trypanosoma cruzi surface antigens of blood and culture forms. J Exp Med 153: 629–639PubMedCrossRefGoogle Scholar
  50. Nussenzweig V, Goble FC (1966) Further studies on the antigenic constitution of strains of Trypanosoma (Schizotrypanum) cruzi. Exp Parasitol 18: 224–230CrossRefGoogle Scholar
  51. Orozco O, Afchain D, Rodriquez C, Ovlaque G, Loyens M, Capron M (1982) Production of monoclonal antibody anti-antigen 5 for Trypanosoma cruzi. CR Seances Acad Sci 295: 783–786Google Scholar
  52. Parodi AJ, Cazzulo JJ (1982) Protein glycosylation in Trypanosoma cruzi. II. Partial characterization of protein-bound oligosaccharides labeled in vivo. J Biol Chem 257: 7641–7645PubMedGoogle Scholar
  53. Parodi AJ, Leloir LF (1979) The role of lipid intermediates in the glycosylation of proteins in the eukaryotic cell. Biochem Biophys Acta 559: 1–37PubMedGoogle Scholar
  54. Parodi AJ, Quesada-Allue LA (1982) Protein glycosylation in Trypanosoma cruzi. I. Characterization of dolichol-bound monosaccharide and oligosaccharides synthesized in vivo. J Biol Chem 257: 7637–7640PubMedGoogle Scholar
  55. Pereira MEA (1983) A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219: 1444–1446PubMedCrossRefGoogle Scholar
  56. Pereira NM, Timm SL, Costa SCG, Rebello MA, De Souza W (1978) Trypanosoma cruzi: isolation and characterization of membrane and flagella fractions. Exp Parasitol 46: 225–234PubMedCrossRefGoogle Scholar
  57. Pereira MEA, Loures MA, Villalta F, Andrade AFB (1980) Lectin receptors as markers for Trypanosoma cruzi: developmental stages and a study of the interaction of wheat germ agglutinin with sialic acid residues on epimastigote cells. J Exp Med 152: 1375–1392PubMedCrossRefGoogle Scholar
  58. Pereira MEA, Andrade AFB, Ribeiro JMC (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211: 597–600PubMedCrossRefGoogle Scholar
  59. Piras MM, De Rodriguez OO, Piras R (1981) Trypanosoma cruzi: antigenic composition of axonemes and flagellar membranes of epimastigotes cultured in vitro. Exp Parasitol 51: 59–73PubMedCrossRefGoogle Scholar
  60. Piras R, Piras MM, Henriquez D (1982) The effect of inhibitors of macromolecular biosynthesis on the in vitro infectivity and morphology of Trypanosoma cruzi trypomastigotes. Mol Biochem Parasitol 6: 83–92PubMedCrossRefGoogle Scholar
  61. Repka D, Camargo IJB, Santana EM, Cunha WM, De Souza OC, Sakurda JK, Rangel HA (1980) Surface antigenic determinant of epimastigote and amastigote forms of different strains of Trypanosoma cruzi. Tropenmed Parasitol 31: 239–246PubMedGoogle Scholar
  62. Ribeiro dos Santos R, Marquez JO, Von Gal Furtado CC, De Ramos JC, Martin AR, Koberle F (1979) Antibodies against neurons in chronic Chagas disease. Tropenmed Parasitol 30: 19–23PubMedGoogle Scholar
  63. Roden L, Horowitz MI (1978) Structure and biosynthesis of connective tissue proteoglycans. In: Horowitz MI, Pigman W (eds) Glycoconjugates vol 2. Academic, New York, pp 3–71Google Scholar
  64. Scharfstein J, Rodrigues MM, Alves CA, De Souza W, Previato JO, Mendonca-Previato L (1983) Trypanosoma cruzi: description of a highly purified surface antigen defined by human antibodies. J Immunol 131: 972–976PubMedGoogle Scholar
  65. Schauer R, Reuter G, Muhlpfordt H, Andrade AFB, Pereira MEA (1983) The occurence of N-acetyl and N-glycoloylneuraminic acid in Trypanosoma cruzi. Hoppe Seylers Z Physiol Chem 364: 1053–1057PubMedCrossRefGoogle Scholar
  66. Schechter M, Flint JE, Voller A, Guhl F, Markinkelle CJ, Miles MA (1983) Purified Trypanosoma cruzi specific glycoprotein for discriminative serological diagnosis of South American trypanoso-miasis (Chagas’ disease). Lancet II: 939–941Google Scholar
  67. Scott MT, Neal RA (1984) Vaccine potential of cell surface glycoprotein of Trypanosoma cruzi. Proc R Acad Sci [Biol] 307: 63–72Google Scholar
  68. Scott MT, Snary D (1979) Protective immunisation of mice using cell surface glycoprotein from Trypanosoma cruzi. Nature 282: 73–74PubMedCrossRefGoogle Scholar
  69. Scott MT, Bahr G, Moddaber F, Afchain D, Chedid L (1984) Adjuvant requirements for protective immunization of mice using a Trypanosoma cruzi 90 K cell surface glycoprotein. Int Arch Allergy Appl Immunol 74: 373–377PubMedCrossRefGoogle Scholar
  70. Segura EL, Cura EN, Paulone I, Vasquez C, Cerisola JA (1974) Antigenic make-up of subcellular fractions of Trypanosoma cruzi. J Protozool 21: 571–574PubMedGoogle Scholar
  71. Segura EL, Vazquez C, Bronzina A, Campos JM, Cerisola JA, Gonzalez Cappa SM (1977) Antigens of the subcellular fractions of Trypanosoma cruzi. II. Flagellar and membrane fraction. J Protozool 24: 540–543PubMedGoogle Scholar
  72. Sher A, Snary D (1982) Specific inhibition of the morphogenesis of Trypanosoma cruzi by a monoclonal antibody. Nature 300: 639–640PubMedCrossRefGoogle Scholar
  73. Sher A, Crane MSJ, Kirchhoff LV (1983) Incubation in mice provides a signal for differentiation of Trypanosoma cruzi epimastigotes to trypomastigotes. J Protozool 30: 278–283PubMedGoogle Scholar
  74. Snary D (1983) Cell surface glycoproteins of Trypanosoma cruzi: protective immunity in mice and antibody levels in human chagasic sera. Trans R Soc Med Hyg 77: 126–129CrossRefGoogle Scholar
  75. Snary D, Hudson L (1979) Trypanosoma cruzi cell surface proteins: identification of one major glycoprotein. FEBS Lett 100: 166–170PubMedCrossRefGoogle Scholar
  76. Snary D, Scott MT (1980) A cell surface glycoprotein from Trypanosoma cruzi capable of inducing protective immunity. In: Van den Bossche H (ed) The host invader interplay. Elsevier/North Holland Biomedical, Amsterdam, pp 253–256Google Scholar
  77. Snary D, Ferguson MAJ, Scott MT, Allen AK (1981) Cell surface antigens of Trypanosoma cruzi: use of monoclonal antibodies to identify and isolate an epimastigote specific glycoprotein. Mol Biochem Parasitol 3: 343–356PubMedCrossRefGoogle Scholar
  78. Snary D, Flint JE, Wood JN, Scott MT, Chapman MD, Dodd J, Jessell TM, Miles MA (1983) A monoclonal antibody with specificity for Trypanosoma cruzi, central and peripheral neurones and glia. Clin Exp Immunol 54: 617–624PubMedGoogle Scholar
  79. Varki A, Kornfeld S (1980) Identification of a rat liver N-acetylglucosaminyl phosphodiesterase capable of removing blocking N-acetylglucosamine residues from phosphorylated high mannose oligosaccharides of lysosomal enzymes. J Biol Chem 255: 8398–8401PubMedGoogle Scholar
  80. Villalta F, Kierszenbaum F (1983) Role of cell surface mannose residues in host cell invasion by Trypanosoma cruzi. Biochim Biophys Acta 736: 39–44PubMedCrossRefGoogle Scholar
  81. Voorheis HP, Gale JS, Owen MJ, Edwards W (1979) The isolation and partial characterization of the plasma membrane from Trypanosoma brucei. Biochem J 180: 11–24PubMedGoogle Scholar
  82. Wood JN, Hudson L, Jessell TM, Yamamoto M (1982) A monoclonal antibody defining antigenic determinants on subpopulations of mammalian neurones and Trypanosoma cruzi. Nature 296: 34–38PubMedCrossRefGoogle Scholar
  83. Yoshida N (1983) Surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi. Infect Immun 40: 836–839PubMedGoogle Scholar
  84. Zingales B, Carniol C, Abrahamsohn PA, Colli W (1979) Purification of an adenylyl cyclase-containing plasma membrane fraction from Trypanosoma cruzi. Biochim Biophys Acta 550: 233–244PubMedCrossRefGoogle Scholar
  85. Zingales B, Andrews NW, Kuwajima VY, Colli W (1982a) Cell surface antigens of Trypanosoma cruzi: possible correlation with the interiorization process in mammalian cells. Mol Biochem Parasitol 6: 111–124PubMedCrossRefGoogle Scholar
  86. Zingales B, Martin NF, De Lederkremer RM, Colli W (1982b) Endogenous and surface labeling of glycoconjugates from the three differentiation stages of Trypanosoma cruzi. FEBS Lett 142: 238–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • D. Snary
    • 1
  1. 1.Department of Molecular BiologyWellcome Research LaboratoriesBeckenhamGreat Britain

Personalised recommendations