Glycosylation of the Variant Surface Antigens of Trypanosoma brucei

  • A. A. Holder
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 117)


The variant-specific protein that forms the surface coat of the bloodstage trypanosome of Trypanosoma brucei is a glycoprotein, with oligosaccharides attached by covalent linkage to specific residues in the protein. The organism is able to express sequentially individual genes from a large repertoire of surface antigen genes and glycosylation of each of these gene products has been shown by binding to lectins (Strickler et al. 1978), by the direct detection of specific sugars associated with the protein (Allsopp and Njogu 1974; Johnson and Cross 1977) or by the effects of various inhibitors of protein glycosylation on the biosynthesis of the protein (Strickler and Patton 1980; Rovis and Dube 1981). The variant-specific proteins of the related trypanosomes T. congolense (Rautenberg et al. 1981; Reinwald et al. 1981) and T. equiperdum (Baltz et al. 1977) are also glycosylated. The molecular basis of antigenic variation and the biochemistry of the variant surface glycoproteins (VSGs) have been reviewed recently (Turner 1982; Borst and Cross 1982; Englund et al. 1982). This chapter will describe what is known about the location, biosynthesis, processing and structure of the carbohydrate attached to VSGs of T. brucei and will assess their possible significance for the biology of the parasite.


Protein Glycosylation Amino Acid Sequence Homology Trypanosoma Brucei Potential Glycosylation Site Variant Surface Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen G, Gurnett LP, Cross GAM (1982) Complete amino acid sequence of a variant surface glycoprotein (VSG 117) from Trypanosoma brucei. J Mol Biol 157: 527–546PubMedCrossRefGoogle Scholar
  2. Allsopp BA, Njogu AR (1974) Monosaccharide composition of the surface glycoprotein antigens of Trypanosoma brucei. Parasitology 69: 271–281PubMedCrossRefGoogle Scholar
  3. Baltz T, Baltz D, Pautrizel R (1977) Chemical and immunological characterization of specific glycoproteins from Trypanosoma equiperdum variants. FEBS Lett 82: 93–96PubMedCrossRefGoogle Scholar
  4. Baltz T, Giroud Ch, Baltz D, Duvillier G, Degand P, Demaille J, Pautrizel R (1982) The variable surface glycoproteins of Trypanosoma equiperdum are phosporylated. EMBO J 1: 1393–1398PubMedGoogle Scholar
  5. Baltz T, Duvillier G, Giroud Ch, Richet C, Baltz D, Degand P (1983) The variant surface glycoproteins of Trypanosoma equiperdum. Identification of a phosphorylated glycopeptide as the cross-reacting antigenic determinant. FEBS Lett 158: 174–178PubMedCrossRefGoogle Scholar
  6. Barbet AF, McGuire TC (1978) Crossreacting determinants in variant-specific surface antigens of African trypanosomes. Proc Natl Acad Sci USA 75: 1989–1993PubMedCrossRefGoogle Scholar
  7. Barbet AF, Musoke AJ, Shapiro SZ, Mpimbaza G, McGuire TC (1981) Identification of the fragment containing the cross-reacting antigenic determinants in the variable surface glycoprotein of Trypanosoma brucei. Parasitology 83: 623–637CrossRefGoogle Scholar
  8. Boothroyd JC, Cross GAM, Hoeijmakers JHJ, Borst P (1980) A variant surface glycoprotein of Trypanosoma brucei synthesized with a C-terminal hydrophobic ‘tail’ absent from purified glycoprotein. Nature 288: 624–626PubMedCrossRefGoogle Scholar
  9. Boothroyd JC, Paynter CA, Cross GAM, Bernards A, Borst P (1981) Variant surface glycoproteins of Trypanosoma brucei are synthesized with cleavable hydrophobic sequences at the carboxy and amino termini. Nucleic Acids Res 9: 4735–4743PubMedCrossRefGoogle Scholar
  10. Boothroyd JC, Paynter CA, Coleman SL, Cross GAM (1982) Complete nucleotide sequence of complementary DNA coding for a variant surface glycoprotein from Trypanosoma brucei. J Mol Biol 157: 547–556PubMedCrossRefGoogle Scholar
  11. Borst P, Cross GAM (1982) Molecular basis for trypanosome antigenic variation. Cell 29: 291–303PubMedCrossRefGoogle Scholar
  12. Brett CT, Voorheis HP (1980) Glycoprotein biosynthesis in Trypanosoma brucei. The glycosylation of glycoproteins located in and attached to the plasma membrane. Eur J Biochem 109: 139–150PubMedCrossRefGoogle Scholar
  13. Cardoso de Almeida ML, Turner MJ (1982) Cross-reaction between variant surface glycoproteins (VSGs) of Trypanosoma brucei. Proc Brit Soc Parasitol. Parasitology 85: I VGoogle Scholar
  14. Cardoso de Almeida ML, Turner MJ (1983) The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature 302: 349–352PubMedCrossRefGoogle Scholar
  15. Cross GAM (1979) Crossreacting determinants in the C-terminal region of trypanosome variant surface antigens. Nature 277: 310–312PubMedCrossRefGoogle Scholar
  16. Donelson JE, Young JR, Dorfman D, Majiwa PAO, Williams RO (1982) The ILtat 1.4 surface antigen gene family of Trypanosoma brucei. Nucleic Acid Res 10: 6581–6595PubMedCrossRefGoogle Scholar
  17. Duvillier G, Nouvelot A, Richet C, Baltz T, Degand P (1983) Presence of glycerol and fatty acids in the C-terminal end of a variant surface glycoprotein from Trypanosoma equiperdum. Biochem Biophys Res Commun 114: 119–125PubMedCrossRefGoogle Scholar
  18. Englund PT, Hajduk SL, Marini JC (1982) The molecular biology of trypanosomes. Annu Rev Biochem 51: 695–726PubMedCrossRefGoogle Scholar
  19. Gibson R, Kornfeld S, Schlesinger S (1980) A role for oligosaccharides in glycoprotein biosynthesis. TIBS 5: 290–293Google Scholar
  20. Holder AA (1983a) Carbohydrate is linked through ethanolamine to the C-terminal amino acid of Trypanosoma brucei variant surface glycoprotein. Biochem J 209: 261–262PubMedGoogle Scholar
  21. Holder AA (1983b) Characterisation of the cross-reacting carbohydrate groups on two variant surface glycoproteins of Trypanosoma brucei. Mol Biochem Parasitol 7: 331–338PubMedCrossRefGoogle Scholar
  22. Holder AA, Cross GAM (1981) Glycopeptides from variant surface glycoproteins of Trypanosoma brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Mol Biochem Parasitol 2: 135–150PubMedCrossRefGoogle Scholar
  23. Holder AA, Boothroyd JC, Cross GAM (1980) Trypanosome variant surface glycoprotein: the C-terminus of the protein is the location of antigenically cross reacting carbohydrate groups, of a putative membrane attachment sequence and the site of proteolytic processing. In: Van den Bossche H (ed) The host invader interplay. Elsevier/North Holland Biomedical, AmsterdamGoogle Scholar
  24. Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50: 555–583PubMedCrossRefGoogle Scholar
  25. Johnson JG, Cross GAM (1977) Carbohydrate composition of variant-specific surface antigen glycoproteins from Trypanosoma brucei. J Protozool 24: 587–591PubMedGoogle Scholar
  26. Kornfeld R, Kornfeld S (1976) Comparative aspects of glycoprotein structure. Annu Rev Biochem 45: 217–237PubMedCrossRefGoogle Scholar
  27. Labastie MC, Baltz T, Richet C, Giroud Ch, Duvillier G, Pautrizel R, Degand P (1981) Variant specific glycoproteins of Trypanosoma equiperdum: cross reacting determinants and chemical studies. Biochem Biophys Res Commun 99: 729–736PubMedCrossRefGoogle Scholar
  28. Lehle L, Tanner W (1983) Polyprenol-linked sugars and glycoprotein synthesis in plants. Biochem Soc Trans 11: 568–574PubMedGoogle Scholar
  29. Liu AYC, Van der Ploeg LHT, Rlisewlik FAM, Borst P (1983) The transposition unit of variant surface glycoprotein gene 118 of Trypanosoma brucei. Presence of repeated elements at its border and absence of promoter-associated sequences. J Mol Biol 167: 57–75PubMedCrossRefGoogle Scholar
  30. Majumder HK, Boothroyd JC, Weber H (1981) Homologous 3′-terminal regions of mRNAs for surface antigens of different antigenic variants of Trypanosoma brucei. Nucleic Acids Res 9: 4745–4753PubMedCrossRefGoogle Scholar
  31. Matthyssens G, Michiels F, Hamers R, Pays E, Steinert M (1981) Two variant surface glycoproteins of Trypanosoma brucei have a conserved C-terminus. Nature 293: 230–233PubMedCrossRefGoogle Scholar
  32. McConnell J, Cordingley JS, Turner MJ (1982) The biosynthesis of Trypanosoma brucei variant surface glycoproteins, in vitro processing of a signal peptide and glycosylation using heterologous rough endoplasmic reticulum vesicles. Mol Biochem Parasitol 6: 161–174PubMedCrossRefGoogle Scholar
  33. McConnell J, Turner MJ, Rovis L (1983) Biosynthesis of Trypanosoma brucei variant surface glycoproteins — analysis of carbohydrate heterogeneity and timing of post-translational modifications. Mol Biochem Parasitol 8: 119–136PubMedCrossRefGoogle Scholar
  34. Michiels F, Matthyssens G, Kronenberger P, Pays E, Dero B, Van Assel S, Darville M, Cravador A, Steinert M, Hamers R (1983) Gene activation and re-expression of a Trypanosoma brucei variant surface glycoprotein. EMBO J 2: 1185–1192PubMedGoogle Scholar
  35. Olden K, Parent JB, White SL (1982) Carbohydrate moieties of glycoproteins. A re-evaluation of their function. Biochim Biophys Acta 650: 209–232PubMedGoogle Scholar
  36. Parodi AJ, Cazzulo JJ (1982) Protein glycosylation in Trypanosoma cruzi. II Partial characterization of protein-bound oligosaccharides labeled ‘in vivo’. J Biol Chem 257: 7641–7645PubMedGoogle Scholar
  37. Parodi AJ, Leloir LF (1979) The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta 559: 1–37PubMedGoogle Scholar
  38. Parodi AJ, Quesada-Allue LA (1981) Protein glycosylation in Trypanosoma cruzi. I Characterization of dolichol-bound monosaccharides and oligosaccharides synthesized ‘in vivo’. J Biol Chem 257: 7637–7640Google Scholar
  39. Parodi AJ, Quesada-Allue LA, Cazzulo JJ (1981) Pathway of protein glycosylation in the trypanosomatid Crithidia fasciculata. Proc Natl Acad Sci USA 78: 6201–6205PubMedCrossRefGoogle Scholar
  40. Parodi AJ, Lederkremer GZ, Mendelzon DH (1983) Protein glycosylation in Trypanosoma cruzi. The mechanism of glycosylation and structure of protein-bound oligosaccharides. J Biol Chem 258: 5589–5595PubMedGoogle Scholar
  41. Pollack L, Atkinson PH (1983) Correlation of glycosylation forms with position in amino acid sequence. J Cell Biol 97: 293–300PubMedCrossRefGoogle Scholar
  42. Quesada-Allue LA, Parodi AJ (1983) Novel mannose carrier in the trypanosomatid Crithidia fasciculata behaving as a short α-saturated polyprenyl phosphate. Biochem J 212: 123–128PubMedGoogle Scholar
  43. Rautenberg P, Reinwald E, Risse H-J (1981) Sialic acids are responsible for charge heterogeneity of the variant surface glycoprotein of Trypanosoma congolense. Mol Biochem Parasitol 4: 129–138PubMedCrossRefGoogle Scholar
  44. Reinwald E, Rautenberg P, Risse H-J (1981) Purification of the variant antigens of Trypanosoma congolense. A new approach to the isolation of glycoproteins. Biochim Biophys Acta 668: 119–131PubMedGoogle Scholar
  45. Rice-Ficht AC, Chen KK, Donelson JE (1981) Sequence homologies near the C-termini of the variable surface glycoproteins of Trypanosoma brucei. Nature 294: 53–57CrossRefGoogle Scholar
  46. Rice-Ficht AC, Chen KK, Donelson JE (1982) Point mutations during generation of expression-linked extra copy of trypanosome surface glycoprotein gene. Nature 298: 676–679PubMedCrossRefGoogle Scholar
  47. Rovis L, Dube DK (1981) Studies on the biosynthesis of the variant surface glycoprotein of Trypanosoma brucei: sequence of glycosylation. Mol Biochem Parasitol 4: 77–93PubMedCrossRefGoogle Scholar
  48. Savage A, Geyer R, Reinwald E, Risse H-J, Stirm S (1983) Structure of oligosaccharides from the cell surface glycoprotein of a clone of Trypanosoma congolense. Proceedings of the 7th international symposium on glycoconjugates, Lund-Ronneby, July 1983, pp 286–287Google Scholar
  49. Schachter H, Narasimhan S, Gleeson P, Vella GJ, Brockhausen I (1982) Oligosaccharide branching of glycoproteins: biosynthetic mechanisms and possible biological functions. Philos Trans R Soc Lond [Biol] 300: 145–159CrossRefGoogle Scholar
  50. Schachter H, Narasimhan S, Gleeson P, Vella G (1983) Control of branching during the biosynthesis of asparagine-linked oligosaccharides. Can J Biochem Cell Biol 61: 1049–1066PubMedCrossRefGoogle Scholar
  51. Schwarz RT, Datema R (1982) The lipid pathway of protein glycosylation and its inhibitors: the biological significance of protein-bound carbohydrates. Adv Carbohydr Chem Biochem 40: 287–379PubMedCrossRefGoogle Scholar
  52. Strickler JE, Patton CL (1980) Trypanosoma brucei brucei: inhibition of glycosylation of the major variable surface coat glycoprotein by tunicamycin. Proc Natl Acad Sci USA 77: 1529–1533PubMedCrossRefGoogle Scholar
  53. Strickler JE, Patton CL (1982) Trypanosoma brucei: effect of inhibition of N-linked glycosylation on the nearest neighbor analysis of the major variable surface coat glycoprotein. Mol Biochem Parasitol 5: 117–132PubMedCrossRefGoogle Scholar
  54. Strickler JE, Mancini PE, Patton CL (1978) Trypanosoma brucei brucei: isolation of the major surface coat glycoprotein by lectin affinity chromatography. Exp Parasitol 46: 262–276PubMedCrossRefGoogle Scholar
  55. Turner MJ (1982) Biochemistry of the variant surface glycoproteins of salivarian trypanosomes. Adv Parasitol 21: 69–153PubMedCrossRefGoogle Scholar
  56. Vervoort T, Barbet AF, Musoke AJ, Magnus E, Mpimbaza G, Van Meirvenne N (1981) Isotypic surface glycoproteins of trypanosomes. Immunology 44: 223–232PubMedGoogle Scholar
  57. Voorheis HP, Bowles DJ, Smith GA (1982) Characteristics of the release of the surface coat protein from bloodstream forms of Trypanosoma brucei. J Biol Chem 257: 2300–2304PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • A. A. Holder
    • 1
  1. 1.Department of Molecular BiologyWellcome Research LaboratoriesBeckenhamGreat Britain

Personalised recommendations