Control of Differentiation in Trypanosoma cruzi

  • G. T. Williams
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 117)


Trypanosoma cruzi has a complex life cycle which involves infection of vertebrate hosts and transmission by insect vectors. T. cruzi progresses through a number of quite different sites in its host and vector and the differentiation of the parasite through several distinct stages reflects its adaptation to the cyclical variation in its environment.


Insect Vector Trypanosoma Cruzi Leishmania Donovani Procyclic Form Trypomastigote Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama HJ, Taylor JC (1970) Effect of macrophage engulfment and temperature on the transformation process of Leishmania donovani. Am J Trop Med Hyg 19: 747–754PubMedGoogle Scholar
  2. Alvarenga NJ, Brener Z (1978) Development of Trypanosoma cruzi in the vector in the absence of blood. Acta Trop 35: 315–317PubMedGoogle Scholar
  3. Araujo FG, Remington JS (1981) Characterization of stages and strains of Trypanosoma cruzi by analysis of cell membrane components. J Immunol 127: 855–859PubMedGoogle Scholar
  4. Araujo FG, Handman E, Remington JS (1980) Binding of lectins to the cell surface of Trypanosoma cruzi. J Protozool 27: 397–400PubMedGoogle Scholar
  5. Baker JR, Price J (1973) Growth in vitro of Trypanosoma cruzi as amastigotes at temperatures below 37 degrees C. Int J Parasitol 3: 549–551PubMedCrossRefGoogle Scholar
  6. Bastos RN, Volloch Z, Aviv H (1977) Messenger RNA population analysis during erythroid differentiation: a kinetical approach. J Mol Biol 110: 191–203PubMedCrossRefGoogle Scholar
  7. Bertelli MSM, Golgher RR, Brener Z (1977) Intraspecific variation in Trypanosoma cruzi: effect of temperature on the intracellular differentiation in tissue culture. J Parasitol 63: 434–437PubMedCrossRefGoogle Scholar
  8. Bienen EJ, Hammadi E, Hill GC (1980) Initiation of trypanosome transformation from blood stream trypomastigotes to procyclic trypomastigotes. J Parasitol 66: 680–683PubMedCrossRefGoogle Scholar
  9. Blaschke L (1971) Some characteristics of the transformation process in Leishmania donovani. PhD Thesis, University of California, IrvineGoogle Scholar
  10. Boglioli AR, Guimaraes RC, Brener Z, Bertelli MSM, Golgher RR (1980) Trypanosoma cruzi — host cell interactions and the temperature-sensitive phenotype of CL strain. Ciencia and Cultura 32: 742–749Google Scholar
  11. Borst P, Cross GAM (1982) Molecular basis for trypanosome antigenic variation. Cell 29: 291–303PubMedCrossRefGoogle Scholar
  12. Boss MA (1983) Enhancer elements in immunoglobulin genes. Nature 303: 281–282PubMedCrossRefGoogle Scholar
  13. Bower DJ, Errington LH, Cooper DD, Morris S, Clayton RM (1983) Chicken lens delta-crystallin gene expression and methylation in several non-lens tissues. Nucleic Acids Res 11: 2513–2527PubMedCrossRefGoogle Scholar
  14. Bray RS (1974) Leishmania. Annu Rev Microbiol 28: 189–217PubMedCrossRefGoogle Scholar
  15. Brener Z (1972) A new aspect of Trypanosoma cruzi life cycle in the invertebrate host. J Protozool 19: 23–27PubMedGoogle Scholar
  16. Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27: 347–383PubMedCrossRefGoogle Scholar
  17. Brener Z (1981) Chagas’ disease. In: Michal F (ed) Modern genetic concepts and techniques in the study of parasites. Schwabe, Basel, pp 345–363Google Scholar
  18. Brener Z, Chiari E (1965) Aspects of early growth of different Trypanosoma cruzi strains in culture medium. J Parasitol 51: 922–926PubMedCrossRefGoogle Scholar
  19. Brener Z, Golgher R, Bertelli MSM, Teixeira JA (1976) Strain-dependent thermosensitivity influencing intracellular differentiation of Trypanosoma cruzi in cell culture. J Protozool 23: 147–150PubMedGoogle Scholar
  20. Brown DD (1981) Gene expression in eukaryotes. Science 211: 667–674PubMedCrossRefGoogle Scholar
  21. Brown DD, Dawid IB (1968) Specific gene amplification in oocytes. Science 160: 272–274PubMedCrossRefGoogle Scholar
  22. Brun R, Berens RL, Krassner SM (1976) Inhibition of Leishmania donovani transformation by hamster spleen homogenates and active human lymphocytes. Nature 262: 689–691PubMedCrossRefGoogle Scholar
  23. Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi: I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6: 93–100PubMedGoogle Scholar
  24. Candido EPM, Reeves R, Davie JR (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14: 105–113PubMedCrossRefGoogle Scholar
  25. Castellani O, Ribeiro LV, Fernandes JF (1967) Differentiation of Trypanosoma cruzi in culture. J Protozool 14: 447–451PubMedGoogle Scholar
  26. Chang K-P (1978) Leishmania infection of human skin fibroblasts in vitro: absence of phagolysosomal fusion after induced phagocytosis of promastigotes and their intracellular transformation. Am J Trop Med Hyg 27: 1084–1096PubMedGoogle Scholar
  27. Chang K-P, Fong D (1982) Antigenic changes during intracellular differentiation of Leishmania mexicana in cultured macrophages. Infect Immun 36: 430–431PubMedGoogle Scholar
  28. Chiari E (1974) Growth and differentiation of Trypanosoma cruzi culture forms kept in laboratory for different periods of time. Rev Inst Med Trop Sao Paulo 16: 81–87PubMedGoogle Scholar
  29. Coombs GH, Craft JA, Hart DT (1982) A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol 5: 199–211PubMedCrossRefGoogle Scholar
  30. Coombs GH, Hart DT, Capaldo J (1983) Leishmania mexicana: drug sensitivities of promastigotes and transforming amastigotes. J Antimicrob Chemother 11: 151–162PubMedCrossRefGoogle Scholar
  31. Crane MStJ, Dvorak JA (1982) Trypanosoma cruzi: spontaneous transformation by a Y strain variant in liquid medium. Exp Parasitol 54: 87–92PubMedCrossRefGoogle Scholar
  32. Creissen D, Shall S (1982) Regulation of DNA ligase activity by poly (ADP-ribose). Nature 296: 271–272PubMedCrossRefGoogle Scholar
  33. Cushley W, Williamson AR (1982) Expression of immunoglobulin genes. Essays Biochem 18: 1–39PubMedGoogle Scholar
  34. Darnell JE (1982) Variety in the level of gene control in eukaryotic cells. Nature 297: 365–371PubMedCrossRefGoogle Scholar
  35. De Isola ELD, Lammel EM, Katzin VJ, Gonzalez Cappa SM (1981) Influence of organ extracts of Triatoma infestans on differentiation of Trypanosoma cruzi. J Parasitol 67: 53–58PubMedCrossRefGoogle Scholar
  36. Dwyer DM, Langreth SG, Dwyer NK (1974) Evidence for a polysaccharide surface coat in the developmental stages of Leishmania donovani: a fine structure-cytochemical study. Z Parasitenkd 43: 227–249PubMedCrossRefGoogle Scholar
  37. Ehrlich M, Wang RY-H (1981) 5-Methylcytosine in eukaryotic DNA. Science 212: 1350–1357Google Scholar
  38. Farzaneh F, Shall S, Zalin R (1980) DNA strand breaks and poly(ADP-ribose) polymerase activity during chick muscle differentiation. In: Smulson ME, Sugimura T (eds) Novel ADP-ribosylations of regulatory enzymes and proteins. Elsevier, Amsterdam, pp 217–225Google Scholar
  39. Farzaneh F, Zalin R, Brill D, Shall S (1982) DNA strand breaks and ADP-ribosyl transferase activation during cell differentiation. Nature 300: 368–370CrossRefGoogle Scholar
  40. Fernandes JF, Castellani O, Kimura E (1969) Physiological events in the course of the growth and differentiation of Trypanosoma cruzi. Genetics [Suppl] 61: 213–225PubMedGoogle Scholar
  41. Ferro AM, Higgins NP, Olivera BM (1983) Poly(ADP-ribosylation) of a DNA topoisomerase. J Biol Chem 258: 6000–6003PubMedGoogle Scholar
  42. Flint SJ, Weintraub HM (1977) An altered subunit configuration associated with the actively transcribed DNA of integrated adenovirus genes. Cell 12: 783–792PubMedCrossRefGoogle Scholar
  43. Fong D, Chang K-P (1981) Tubulin biosynthesis in the developmental cycle of a parasitic protozoan Leishmania mexicana: changes during differentiation of motile and nonmotile stages. Proc Natl Acad Sci USA 78: 7624–7628PubMedCrossRefGoogle Scholar
  44. Fong D, Chang K-P (1982) Surface antigenic change during differentiation of a parasitic protozoan, Leishmania mexicana: identification by monoclonal antibodies. Proc Natl Acad Sci USA 79: 7366–7370PubMedCrossRefGoogle Scholar
  45. Ghiotto V, Brun R, Jenni L, Hecker H (1979) Trypanosoma brucei: morphometric changes and loss of infectivity during transformation of blood stream forms to procyclic culture forms in vitro. Exp Parasitol 48: 447–456PubMedCrossRefGoogle Scholar
  46. Goncalves MF, Zingales B, Colli W (1980) cAMP phosphodiesterase and activator protein of mammalian cAMP phosphodiesterase from Trypanosoma cruzi. Mol Biochem Parasitol 1: 107–118Google Scholar
  47. Grainger RM, Hazard-Leonards RM, Samaha F, Hougan LM, Lesk MR, Thomsen GH (1983) Is hypomethylation linked to activation of S-crystallin genes during lens development? Nature 306: 88–91PubMedCrossRefGoogle Scholar
  48. Green MM (1980) Transposable elements in Drosophila. Annu Rev Genet 14: 109–120PubMedCrossRefGoogle Scholar
  49. Hart DT, Coombs GH (1981) The effects of carbon dioxide and oxygen upon the growth and in vitro transformation of Leishmania mexicana mexicana. Mol Biochem Parasitol 4: 117–127PubMedCrossRefGoogle Scholar
  50. Hart DT, Coombs GH (1982) Leishmania mexicana: Energy metabolism of amastigotes and promastigotes. Exp Parasitol 54: 397–409PubMedCrossRefGoogle Scholar
  51. Hart DT, Vickerman K, Coombs GH (1981) Respiration of Leishmania mexicana amastigotes and promastigotes. Mol Biochem Parasitol 4: 39–51PubMedCrossRefGoogle Scholar
  52. Hendricks LD, Wood DE, Hajduk ME (1978) Haemoflagellates: commercially available liquid media for rapid cultivation. Parasitology 76: 309–316PubMedCrossRefGoogle Scholar
  53. Hofer E, Darnell JE (1981) The primary transcription unit of the mouse beta-major globin gene. Cell 23: 585–593PubMedCrossRefGoogle Scholar
  54. Hudson L, Snary D, Morgan SJ (1984) Trypanosoma cruzi: continuous cultivation with murine cell lines. Parasitology 88: 283–294PubMedGoogle Scholar
  55. Hunter KW Jr, Cook CL, Hensen SA (1982) Temperature-induced in vitro transformation of Leishmania mexicana. Ultrastructural comparison of culture-transformed and intracellular amastigotes. Acta Trop 39: 143–150PubMedGoogle Scholar
  56. Johnstone AP, Williams GT (1982) Role of DNA breaks and ADP-ribosyl transferase activity in eukaryotic differentiation demonstrated in human lymphocytes. Nature 300: 368–370PubMedCrossRefGoogle Scholar
  57. Jongstra-Bilen J, Ittel M-E, Niedergang C, Vosberg H-P, Mandel P (1983) DNA topoisomerase 1 from calf thymus is inhibited in vitro by poly (ADP-ribosylation). Eur J Biochem 136: 391–396PubMedCrossRefGoogle Scholar
  58. Klar AJS, Strathern JN, Broach JR, Hicks JB (1981) Regulation of transcription in expressed and unexpressed mating type cassettes of yeast. Nature 289: 239–244PubMedCrossRefGoogle Scholar
  59. Königk E, Putfarken B (1980) Stage-specific differences of a perhaps signal-transferring system in Leishmania donovani. Tropenmed Parasitol 31: 421–424PubMedGoogle Scholar
  60. Krassner SM, Morrow CD, Flory B (1980) Inhibition of Leishmania donovani amastigote-to-promastigote transformation by infected hamster spleen lymphocyte lysates. J Protozool 27: 87–92PubMedGoogle Scholar
  61. Lanar DE (1979) Growth and differentiation of Trypanosoma cruzi cultivated with a Triatoma infestans embryo cell line. J Protozool 26: 457–462PubMedGoogle Scholar
  62. Lauth MR, Spear BB, Heumann J, Prescott DM (1976) DNA of ciliated protozoa: DNA sequence diminution during macronuclear development of Oxytricha. Cell 7: 67–74PubMedCrossRefGoogle Scholar
  63. Lewis DH, Peters W (1977) The resistance of intracellular Leishmania parasites to digestion by lysozomal enzymes. Ann Trop Med Parasitol 71: 295–312PubMedGoogle Scholar
  64. Lilley DMJ (1983) Eukaryotic genes — are they under torsional stress? Nature 305: 276–277PubMedCrossRefGoogle Scholar
  65. Ling NR, Kay JE (1975) Lymphocyte stimulation, 2nd edition. North Holland Publishing, AmsterdamGoogle Scholar
  66. Lloyd CW, Rees DA (1981) Cellular controls in differentiation. Academic, LondonGoogle Scholar
  67. Looker DL, Berens RL, Marr JJ (1983) Purine metabolism in Leishmania donovani amastigotes and promastigotes. Mol Biochem Parasitol 9: 15–28PubMedCrossRefGoogle Scholar
  68. Mancini PE, Patton CL (1981) Cyclic 3′,5′-adenosine monophosphate levels during the development cycle of Trypanosoma brucei brucei in the rat. Mol Biochem Parasitol 3: 19–31PubMedCrossRefGoogle Scholar
  69. Mayfield JE, Serunian LA, Silver LM, Elgin SCR (1978) A protein released by DNAase 1 digestion of Drosophila nuclei is preferentially associated with puffs. Cell 14: 539–544PubMedCrossRefGoogle Scholar
  70. McMahon-Pratt DM, David JR (1982) Monoclonal antibodies recognising determinants for the promastigote stage of Leishmania mexicana. Mol Biochem Parasitol 6: 317–327CrossRefGoogle Scholar
  71. Meyer H, Xavier de Oliveira M (1948) Cultivation of Trypanosoma cruzi in tissue cultures: a four year study. Parasitology 39: 91–94PubMedCrossRefGoogle Scholar
  72. Morrow CD, Flory B, Krassner SM (1980) Polyamines in the hemoflagellate, Leishmania donovani: evidence for spermine in the amastigote stage. Comp Biochem Physiol 66B: 307–311Google Scholar
  73. Neva FA, Malone MF, Myers BR (1961) Factors influencing the intracellular growth of Trypanosoma cruzi in vitro. Am J Trop Med Hyg 10: 140–154PubMedGoogle Scholar
  74. Nevers P, Saedler H (1977) Transposable genetic elements as agents of gene instability and chromosomal rearrangements. Nature 268: 109–115PubMedCrossRefGoogle Scholar
  75. Newrock KM, Cohen LH, Hendricks MB, Donnelly RJ, Weinberg ES (1976) Stage-specific mRNAs coding for subtypes of H2A and H2B histones in the sea urchin embryo. Cell 14: 327–336CrossRefGoogle Scholar
  76. Nogueira N, Chaplan S, Tydings JD, Unkeless J, Cohn Z (1981) Trypanosoma cruzi: surface antigens of blood and culture forms. J Exp Med 153: 629–639PubMedCrossRefGoogle Scholar
  77. Nogueira N, Unkeless J, Cohn Z (1982) Specific glycoprotein antigens on the surface of insect and mammalian stages of Trypanosoma cruzi. Proc Natl Acad Sci USA 79: 1259–1263PubMedCrossRefGoogle Scholar
  78. O’Daly JA (1976) Effect of fetal calf serum fractions and proteins on division and transformation of Trypanosoma (Schizotrypanum) cruzi in vitro. J Protozool 23: 577–583PubMedGoogle Scholar
  79. Pan C-T (1971) Cultivation and morphogenesis of Trypanosoma cruzi in improved liquid media. J Protozool 18: 556–560PubMedGoogle Scholar
  80. Pereira MEA (1983) A developmentally regulated neuraminidase activity in Trypanosoma cruzi. Science 219: 1444–1446PubMedCrossRefGoogle Scholar
  81. Pereira MEA, Loures MA, Villalta F, Andrade AFB (1980) Lectin receptors as markers for Trypanosoma cruzi. J. Exp Med 152: 1375–1392PubMedCrossRefGoogle Scholar
  82. Pereira MEA, Andrade AFB, Ribeiro JMC (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211: 597–600PubMedCrossRefGoogle Scholar
  83. Peters W (1982) Protozoa. In: Cohen S, Warren KS (eds) Immunology of parasitic infections. Blackwell, London, pp 761–808Google Scholar
  84. Roberts JL, Herbert E (1977) Characterisation of a common precursor to corticotropin and ß-lipotropin: cell-free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc Natl Acad Sci USA 74: 4826–4830PubMedCrossRefGoogle Scholar
  85. Rogers J, Early P, Carter C, Calame K, Bond M, Hood L, Wall R (1980) Two mRNAs with different 3′ ends encode membrane-bound and secreted forms of immunoglobulin chain. Cell 20: 303–312PubMedCrossRefGoogle Scholar
  86. Rudzinska MA, D’Alesandro PA, Trager W (1964) The fine structure of Leishmania donovani and the role of the kinetoplast in the Leishmania-leptomonad transformation. J Protozool 11: 166–191PubMedGoogle Scholar
  87. Schwartz RJ, Zimmer WE (1982) Amplification of the chicken skeletal α-actin gene during myogenesis. In: Pearson ML, Epstein HF (eds) Muscle developement. Cold Spring Harbour, New York, pp 247–257Google Scholar
  88. Shall S (1982) ADP-ribose in DNA repair. In: Hayaishi O, Leda K (eds) ADP-ribosylation reactions, biology and medicine. Academic, New York, pp 478–520Google Scholar
  89. Sher A, Snary D (1982) Specific inhibition of the morphogenesis of Trypanosoma cruzi by a monoclonal antibody. Nature 300: 639–640PubMedCrossRefGoogle Scholar
  90. Simpson L (1968) The Leishmania-leptomonad transformation of Leishmania donovani: nutritional requirements, respiration changes and antigenic changes. J Protozool 15: 201–207PubMedGoogle Scholar
  91. Soeiro R, Vaughn MH, Warner JR, Darnell JE (1968) The turnover of nuclear DNA-like RNA in HeLa cells. J Cell Biol 39: 112–118PubMedCrossRefGoogle Scholar
  92. Strickler JE, Patton CL (1975) Adenosine 3′,5′-monophosphate in reproducing and differentiated trypanosomes. Science 190: 1110–1112PubMedCrossRefGoogle Scholar
  93. Thompson JG, Sinton JA (1912) The morphology of Trypanosoma rhodesiense in cultures: a comparison with the developmental forms described in Glossina palpalis. Ann Trop Med Parasitol 6: 331–356Google Scholar
  94. Ucros H, Granger B, Krassner SM (1983) Trypanosoma cruzi: effect of pH on in vitro formation of metacyclic trypomastigotes. Acta Trop 40: 105–112PubMedGoogle Scholar
  95. Vickerman K (1962) The surface coat of blood-stream trypanosomes. Trans R Soc Trop Med Hyg 62: 463Google Scholar
  96. Vickerman K (1971) Morphological and physiological considerations of extracellular blood protozoa. In: Fallis AM (ed) Ecology and physiology of parasites. Hilger, London, pp 58–91Google Scholar
  97. Wallach M, Fong D, Chang K-P (1982) Post-transcriptional control of tubulin biosynthesis during Leishmanial differentiation. Nature 299: 650–652PubMedCrossRefGoogle Scholar
  98. Walter RD, Opperdoes FR (1982) Subcellular distribution of adenylate cyclase, cyclic-AMP phosphodiesterase, protein kinases and phosphoprotein phosphatase in Trypanosoma brucei. Mol Biochem Parasitol 6: 287–295PubMedCrossRefGoogle Scholar
  99. Walter RD, Buse E, Ebert F (1978) Effect of cyclic AMP on transformation and proliferation of Leishmania cells. Tropenmed Parasitenkd 29: 439–442Google Scholar
  100. Warren LG (1960) Metabolism of Schizotrypanum cruzi. J Parasitol 46: 529–539PubMedCrossRefGoogle Scholar
  101. Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193: 848–856PubMedCrossRefGoogle Scholar
  102. Weisbrod S (1982) Active chromatin. Nature 297: 289–295PubMedCrossRefGoogle Scholar
  103. Williams GT (1983a) Inhibition of Trypanosoma cruzi differentiation by inhibitors of ADPribosyl transferase. J Cell Biochem [Suppl] 7A: 16Google Scholar
  104. Williams GT (1983b) Trypanosoma cruzi: inhibition of intracellular and extracellular differentiation by antagonists of ADP-ribosyl transferase. Exp Parasitol 56: 409–415PubMedCrossRefGoogle Scholar
  105. Williams GT, Hudson L (1982) Growth of Trypanosoma cruzi in vitro: development and application of a continuous-flow culture system. Parasitology 84: 511–526PubMedCrossRefGoogle Scholar
  106. Williams GT, Johnstone AP (1983) ADP-ribosyl transferase, rearrangement of DNA, and cell differentiation. Biosci Rep 3: 815–830PubMedCrossRefGoogle Scholar
  107. Wood DE, Pipkin AC (1969) Multiplication and differentiation of Trypanosoma cruzi in an insect cell culture system. Exp Parasitol 24: 176–183PubMedCrossRefGoogle Scholar
  108. Wood DE, Sousa OE (1976) Trypanosoma cruzi: effects of Rhodnius prolixus extracts on in vitro development. Rev Inst Med Trop Sao Paulo 18: 93–96PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. T. Williams
    • 1
  1. 1.Department of AnatomyUniversity of Birmingham Medical SchoolBirminghamGreat Britain

Personalised recommendations