Fermentation Products: Physiological and Bioenergetic Considerations

  • O. M. Neijssel
  • D. W. Tempest
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 35)


The overproduction of substances by microbial cultures is discussed in a bioenergetic context. Since many fermentation products are generated by energy-yielding reactions, it is clear that the rate of energy consumption of a cell will influence the rate of product formation. It is shown that the nature of the growth environment influences to a great extent the magnitude of these energy-consuming reactions. On the other hand, the energetic efficiency of the energy-generating reactions can be reduced and this will lead, assuming the same rate of energy consumption, to an increased rate of product formation. Another class of products, in particular proteins, can only be produced by energy-consuming reactions. Therefore, the extra energy consumption caused by the overproduction of proteins is in direct competition with the energy consumption that the cell requires for maintenance and growth. The physiological implications of this metabolic conflict are discussed and it is suggested that this type of overproduction will be inherently unstable, unless the overproduction of a protein increases the fitness of the producer organism.


Fermentation Product Chemostat Culture Paracoccus Denitrificans Producer Organism Maintenance Energy Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Cooper, R.A. 1984. Metabolism of methylglyoxal in microorganisms. Ann. Rev. Microbiol. 38: 49–68.CrossRefGoogle Scholar
  2. (2).
    Dawes, E.A., and Senior, P.J. 1973. The role and regulation of energy reserve polymers in micro-organisms. In Advances in Microbial Physiology, eds. A.H. Rose and D.W. Tempest, pp. 135–266. London: Academic Press.Google Scholar
  3. (3).
    Glusker, J.P. 1968. Mechanism of aconitase action deduced from erystallographic studies of its substrates. J. Molec. Biol. 38: 149–162.PubMedCrossRefGoogle Scholar
  4. (4).
    Hueting, S.; de Lange, T.: and Tempest, D.W. 1979. Energy requirement for maintenance or the transmembrane potassium gradient in Klebsiella aerogenes NCTC 418: a continuous culture study. Arch. Microbiol. 123: 183–188.PubMedCrossRefGoogle Scholar
  5. (5).
    Jarman, T.R., and Pace, G.W. 1984. Energy requirements for microbial exopolysaccharide synthesis. Arch. Microbiol. 137: 231–235.CrossRefGoogle Scholar
  6. (6).
    Kubicek, C.P., and Röhr, M. 1977. Influence of manganese on enzyme synthesis and citric acid accumulation in Aspergillus niger. Eur. J. Appl. Microbiol. 4: 167–175.CrossRefGoogle Scholar
  7. (7).
    Neiissel, O.M. 1977. The effect of 2, 4-dinitrophenol on the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat cultures. FEMS Microbiol. Lett. 1: 47–50.CrossRefGoogle Scholar
  8. (8).
    Neijssel, O.M.; Hardy, G.P.M.A.; Lansbergen, J.C.; Tempest, D.W.; and O’Brien, R.W. 1980. Influence of growth environment on the phosphoenolpyruvate: glucose phosphotransferase activities of Escherichia coli and Klebsiella aerogenes: a comparative study. Arch. Microbiol. 125: 175–179.PubMedCrossRefGoogle Scholar
  9. (9).
    Neijssel, O.M., and Tempest, D.W. 1976. Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch. Microbiol. 107: 215–221.PubMedCrossRefGoogle Scholar
  10. (10).
    Neijssel, O.M., aad Tempest, D.W. 1979. The physiology of metabolite overproduction. In Microbial Technology: Current State, Future Prospects, eds. A.T. Bull, D.C. Ellwood, and C. Ratledge, 29th Symposium of the Society of General Microbiology, pp. 53–82. Cambridge: Cambridge University Press.Google Scholar
  11. (11).
    Neijssel, O.M.; Tempest, D.W.; Postma, P.W.; Duine, J.A.; and FrankJzn, J. 1983. Glucose metabolism by K+ -limited Klebsiella aerogenes: evidence for the involvement of a quinoprotein glucose dehydrogenase. FEMS Microbiol. Lett. 20: 35–39.CrossRefGoogle Scholar
  12. (12).
    O’Brien, R.W.; Neijssel, O.M.; and Tempest, D.W. 1980. Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture. J. Gen. Microbiol. 116: 305–314.PubMedGoogle Scholar
  13. (13).
    Pirt, S.J. 1965. The maintenances energy of bacteria in growing cultures. Proc. Roy. Soc. Lond. B 163: 224–231.CrossRefGoogle Scholar
  14. (14).
    Rosenberger, R.F., and Elsden, S.R. 1960. The yields of Streptococcus faecalis grown in continuous culture. J. Gen. Microbiol. 22: 726–739.PubMedGoogle Scholar
  15. (15).
    Schulze, K.L., and Lipe, R.S. 1964. Relationship between substrate concentration, growth rate, and respiration rate of Escherichia coli in continuous culture. Arch. Microbiol. 48: 1–20.CrossRefGoogle Scholar
  16. (16).
    Sikyta, B.; Kyslík, P.; Voleský, B.; Pavlasovâ, E.; and Stejskalová, E. 1982. Over-production of endoenzymes in Escherichia coli - selection of hyperproducing strains in a chemostat. In Over-production of Microbial Products, eds. V. Krumphanzl, B. Sikyta, and Z. Vanek, pp. 593–599. London: Academic Press.Google Scholar
  17. (17).
    Teixeiria de Mattos, M.J.; Streekstra, H.; and Tempest, D.W. 1984. Metabolic uncoupling of substrate level phosphorylation in anaerobic glucose-limited chemostat cultures of Klebsiella aerogenes NCTC 418. Arch. Microbiol. 139: 260–264.CrossRefGoogle Scholar
  18. (18).
    Tempest, D.W.; Dicks, J.W.; and Hunter, J.R. 1966. The interrelationship between potassium, magnesium, and phosphorus in potassium- limited chemostat cultures in Aerobacter aerogenes. J. Gen. Microbiol. 45: 135–146.Google Scholar
  19. (19).
    Tempest, D.W., and Neijssel, O.M. 1984. The status of YATP and maintenance energy as biologically interpretable phenomena. Ann. Rev. Microbiol. 38: 459–486.CrossRefGoogle Scholar
  20. (20).
    Thomas, T.D.; Ellwood, D.C.; and Longyear, V.M.C. 1979. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 138: 109–117.PubMedGoogle Scholar
  21. (21).
    van Verseveld, H.W.; Chesbro, W.R.; Braster, M.; and Stouthamer, A.H. 1984. Eubacteria have 3 growth modes keyed to nutrient flow. Consequences for the concept of maintenance and maximal growth yield. Arch. Microbiol. 137: 176–184.PubMedCrossRefGoogle Scholar
  22. (22).
    Wouters, J.T.M., and Buysman, P.J. 1977. Production of some exo- cellular enzymes by Bacillus licheniformis 749/C in chemostat cultures. FEMS Microbiol. Lett. 1: 109–112.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • O. M. Neijssel
    • 1
  • D. W. Tempest
    • 1
  1. 1.Laboratorium voor MicrobiologieUniversiteit van AmsterdamAmsterdamNetherlands

Personalised recommendations