Plant-Microbe Interactions

  • J. E. Beringer
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 35)


All plants are exposed to extremely large numbers of microorganisms; some are pathogenic and some beneficial. The potential damage that can be caused by pathogens appears to be held in check by beneficial microorganisms, many of which are probably unknown to us. Future exploitation of such interactions will be as dependent on a better understanding of the biology of plant-microbe interaction as on developments in biotechnology. Plant nutrition is influenced by nitrogen-fixing microorganisms, mycorrhizal fungi, and possibly other microorganisms. These existing symbioses can be exploited to improve the activities that we understand sufficiently well and to introduce novel functions into the symbionts. Whether the production of growth-promoting substances by microorganisms can be exploited for crop production or not remains to be established.


Nitrogen Fixation Mycorrhizal Fungus Rhizobium Strain Symbiotic Association Mycorrhizal Symbiosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Becker, J.; Hedges, R.W.; and Messen. 1985. Inhibitory effects of pseudobactins on uptake of iron by higher plants. Applied Envir. Microbiol. 49: 1090–1093.Google Scholar
  2. (2).
    Beringer, J.E. 1984. The significance of symbiotic nitrogen fixation in plant production. CRC Crit. Rev. Plant Sci. 1: 269–286.CrossRefGoogle Scholar
  3. (3).
    Beringer, J.E., and Tinker, P.B. 1983. The role of microorganisms in plant nutrition. In Proceedings of the British Sulphur Corporation’s 7th International Conference, pp. 113–118. Dulwich: Purley Press.Google Scholar
  4. (4).
    Brewin, N.J.; Wood, G.A.; and Young, J.P.W. 1983. Contribution of the symbiotic plasmid to the competitiveness of Rhizobium legumi- nosarum. J. Gen. Microbiol. 129: 2973–2977.Google Scholar
  5. (5).
    Brown, M.E. 1982. Nitrogen fixation by free-living bacteria associated with plants - fact or fiction? In Bacteria and Plants, eds. M.E. Rhodes-Roberts and F.A. Skinner, pp. 25–41. Society for Applied Bacteriology Symposium Series No. 10. London, New York: Academic Press.Google Scholar
  6. (6).
    Brown, M.E., and Beringer, J.E. 1983. Potential of antagonists for fungal control. Agr. Ecosyst. Envir. 10: 127–141.CrossRefGoogle Scholar
  7. (7).
    Burggraaf, A.J.P.; Quispel, A.; Tak, T.; and Valstar, J. 1981. Methods of isolation and cultivation of Frankia species from actinorhizas. Plant Soil 61: 157–168.CrossRefGoogle Scholar
  8. (8).
    Burr, T.J., and Caesar, A. 1984. Beneficial plant bacteria. CRC Crit. Rev. Plant Sci. 2: 1–20.CrossRefGoogle Scholar
  9. (9).
    Callaham, D.; Tredici, P. del; and Torrey, J.G. 1978. Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199: 899–902.PubMedCrossRefGoogle Scholar
  10. (10).
    Castanho, B.; Butler, E.E.; and Shepherd, R.J. 1978. The association of double-stranded RNA with Rhizoctonia decline. Phytopathology 68: 1515–1519.CrossRefGoogle Scholar
  11. (11).
    Eisbrenner, G., and Evans, H.J. 1983. Aspects of hydrogenase metabolism in nitrogen fixing legumes and other plant microbe interactions. Ann. Rev. Plant Physiol. 34: 105–136.CrossRefGoogle Scholar
  12. (12).
    Hardarson, G., and Jones, D.G. 1979. The inheritance of preference for stains of Rhizobium trifolii by white clover (Trifolium repens). Ann. Appl. Biol. 92: 329–333.CrossRefGoogle Scholar
  13. (13).
    Harley, J.L., and Smith, S.E. 1983. Mycorrhizal Symbioses. London, New York: Academic Press.Google Scholar
  14. (14).
    Harper, S.H.T., and Lynch, J.M. 1981. The kinetics of straw decomposition in relation to its potential to produce the phytotoxin acetic acid. J. Soil Sci. 32: 627–637.CrossRefGoogle Scholar
  15. (15).
    Hayman, D.S. 1983. The physiology of VA mycorrhizal symbiosis. Can. J. Bot. 61: 944–963.CrossRefGoogle Scholar
  16. (16).
    Heritage, A.D., and Foster, R.C. 1984. Catalase and sulfur in the rice rhizosphere: an ultrastructural histochemical demonstration of a symbiotic relationship. Microb. Ecol. 10: 115–121.CrossRefGoogle Scholar
  17. (17).
    Hornby, D. 1983. Suppressive soils. Ann. Rev. Phytopathol. 21: 65–85.CrossRefGoogle Scholar
  18. (18).
    Joshi, M.M., and Hollis, J.P. 1977. Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulphide in the rice rhizosphere. Science 197: 179–180.CrossRefGoogle Scholar
  19. (19).
    Kerr, A. 1982. Biological control of soil-borne microbial pathogens and nematodes. In Advances in Agricultural Microbiology, ed. N.S. Subba Rao, pp. 429–463. New Delhi: Oxford and IBP.Google Scholar
  20. (20).
    King, G.M.; Klug, M.J.; Wiegert, R.G.; and Chalmers, A.G. 1982. Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh. Science 218: 61–64.PubMedCrossRefGoogle Scholar
  21. (21).
    Kozloff, L.M.; Schofield, M.A.; and Lute, M. 1983. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153: 222–231.PubMedGoogle Scholar
  22. (22).
    Lamont, B.B., and McComb, A.J. 1974. Soil microorganisms and the formation of proteoid roots. Austr. J. Bot. 22: 681–688.CrossRefGoogle Scholar
  23. (23).
    Malajczuk, N., and Bowen, G.D. 1974. Proteoid roots are microbially induced. Nature 251: 316–317.CrossRefGoogle Scholar
  24. (24).
    Menge, J.A. 1983. Utilization of vesieular-arbuscular mycorrhizal fungi in agriculture. Can. J. Bot. 61: 1015–1024.CrossRefGoogle Scholar
  25. (25).
    Mytton, L.R. 1975. Plant genotype x rhizobium strain interactions in white clover. Ann. Appl. Biol. 80: 103–107.PubMedCrossRefGoogle Scholar
  26. (26).
    Nelsen, C.E., and Safir, G.R. 1982. Increased drought tolerance of mycorrhizal onion plant caused by improved phosphorus nutrition. Planta 154: 407–413.CrossRefGoogle Scholar
  27. (27).
    O’Gara, F., and Shanmugam, K.T. 1976. Regulation of nitrogen fixation by rhizobia. Export of fixed N2 as NH4+. Biochim. Biophys. Acta 437: 313–321.PubMedCrossRefGoogle Scholar
  28. (28).
    O’Hara, G.W.; Davey, M.R.; and Lucas, J.A. Effect of inoculation of Zea mays with Azospirillum brasilense strains under temperate conditions. Can. J. Microbiol. 27: 871–877.Google Scholar
  29. (29).
    Peters, G.A.; Calvert, H.E.; Kaplan, D.; Ito, O.; and Toia, R.E. 1982. The Azolla-Anabaena symbiosis: morphology, physiology and use. Isr. J. Bot. 31: 305–323.Google Scholar
  30. (30).
    Postgate, J.R. 1985. Nitrogenase. Biologist 32: 43–48.Google Scholar
  31. (31).
    Robson, R.L., and Postgate, J.R. 1980. Oxygen and hydrogen in biological nitrogen fixation. Ann. Rev. Microbiol. 34: 183–207.CrossRefGoogle Scholar
  32. (32).
    Schonbeck, F. 1979. Endomycorrhiza in relation to plant diseases. In Soil-borne Plant Pathogens, eds. B. Schippers and W. Gams, pp. 271–280. London: Academic Press.Google Scholar
  33. (33).
    Schubert, K.R., and Wolk, C.P., eds. 1982. The Energetics of Biological Nitrogen Fixation, pp. 30. Rockville: American Society of Plant Physiologists.Google Scholar
  34. (34).
    Strobel, G.A., and Nachmias, A. 1985. Agrobacterium rhizogenes promotes the initial growth of bare root stock almond. J. Microbiol. 131: 1245–1249.CrossRefGoogle Scholar
  35. (35).
    Suslow, T.V., and Schroth, M.N. 1982. Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72: 199–206.CrossRefGoogle Scholar
  36. (36).
    Veeger, C., and Newton, W.E., eds. 1984. Advances in Nitrogen Fixation Research. Proceedings of the 5th International Symposium on Nitrogen Fixation, pp. 760, Noordwijkerhout, The Netherlands, August 28-September 3, 1983. The Hague: Martinus Nijhoff/Dr W. Junk.Google Scholar
  37. (37).
    Von Bulow, J.F.W., and Dobereiner, J. 1975. Potential for nitrogen fixation in maize genotypes in Brazil. Proc. Nat. Acad. Sci. USA 72: 2389–2393.CrossRefGoogle Scholar
  38. (38).
    Witty, J.F.; Minchin, F.R.; and Sheehy, J.E. 1985. Carbon costs of nitrogenase activity in legume root nodules determined using acetylene and oxygen. J. Exp. Bot. 34: 951–963.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • J. E. Beringer
    • 1
  1. 1.Unit of Molecular GeneticsUniversity of BristolBristolEngland

Personalised recommendations