Skip to main content

Plant Gene Engineering and Plant Agriculture

  • Conference paper
Biotechnology: Potentials and Limitations

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 35))

Abstract

Many plant breeders feel there is little prospect that genetic engineering will make any real contribution to plant improvement programs. We cannot agree, as it is already clear that recombinant DNA technology will make impacts on plant production systems. Diagnostic tools will provide increased power to many selection schemes and increased accuracy in the selection or appropriate parents in breeding programs. Genetic engineering should also make direct contributions to plant improvement by providing additional means of introducing specific genes to the genetic structure of a cultivar. Gene addition should extend the life of many of our most efficient cultivars and enable them to be used in different and more marginal environments. It should enable a plant breeder to respond to yield limitation in a shorter time. It may also significantly reduce the scale of a plant breeding program. Time and scale of operation are probably the principal factors in determining the effectiveness of any plant improvement effort.

All the components of a gene transfer system are presently in place for only one or two commercial crops. However, it should be possible to have effective systems in each of the major crop species in the near future. Gene transfer technologies will increase the range of variation available to a plant breeder for any given crop species and will provide opportunities for quite novel adjustments to the workings of a genome, adjustments which would not have been possible by classical breeding and selection schemes. We feel sure that the analytical power of recombinant DNA technology will also help to dissect the apparent complexity of many of the major agronomic physiological characteristics so fundamental to successful plant production. We may thus be able to provide substantial yield increases in even the most well developed crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlquist, P.; French, R.; Janda, M.; and Loesch-Fries, L.S. 1984. Multicomponent RNA plant virus infection derived from cloned viral cDNA. Proc. Natl. Acad. Sci. USA 81: 7066–7070.

    Article  PubMed  CAS  Google Scholar 

  2. Appels, R., and Moran, L.B. 1984. The molecular analysis of alien chromatin introduced into wheat. In Gene Manipulation and Plant Improvement, 16 Stadler Genetics Symposium, ed. J.P. Gustafson, pp. 529–557.

    Chapter  Google Scholar 

  3. Barker, J.M.; Mclnnes, J.L.; Murphy, P.J.; and Symons, R.H. 1985. Dot blot procedure with 32p DNA probes for the sensitive detection of avocado sunblotch and other viroids in plants. J. Virol. Meth. 10: 87–98.

    Article  CAS  Google Scholar 

  4. Beadle, G.W. 1980. The ancestry of corn. Sci. Am. 242: 96–103.

    Article  Google Scholar 

  5. Brisson, N.; Paszkowski, J.; Penswick, J.R.; Gronenborn, B.; Potrykus, I. ; and Hohn, T. 1984. Expression of a bacterial gene in plants by using a viral vestor. Nature 310: 511–514.

    Article  CAS  Google Scholar 

  6. Broglie, R.; Bellemaire, G.; Bartlett, S.G; Chua, N.-H; and Cashmore, A. R. 1981. Cloned DNA sequences complementary to mRNA encoding precursors to the small subunit of ribulose-1,5-biphosphate carboxylase and a chlorophyll a/b binding polypeptide. Proc. Natl. Acad. Sci. USA 78: 7304–7308.

    Article  PubMed  CAS  Google Scholar 

  7. Burdon, J.J., and Marshall, D.R. 1981. Australian native species of Glycine - a source of resistance to soybean rust. Plant Dis. 65: 44–45.

    Article  Google Scholar 

  8. Davies, K.E. 1981. The application of DNA recombinant technology to the analysis of the human genome and genetic disease. Hum. Genet. 58: 351–357.

    Article  PubMed  CAS  Google Scholar 

  9. Dennis, E.S.; Gerlach, W.L.; Pryor, A.J.; Bennetzen, J.L.; Inglis, A.; Llewellyn, D.; Sachs, M.M.; Ferl, R.J.; and Peacock, W.J. 1984. Molecular analysis of the alcohol dehydrogenase Adhl gene of maize. Nucl. Acids Res. 12: 3983–4002.

    Article  PubMed  CAS  Google Scholar 

  10. Downes, R.W.; Salisbury, P.A.; Healy, F.W.; and Mackay, J.H.E. 1980. Cultivar Siriver. J. Aust. Inst. Ag. Sci. 46: 200–201.

    Google Scholar 

  11. Fedoroff, N.V.; Furtek, D.B.; and Nelson, O.E. 1985. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Ac. Proc. Natl. Acad. Sci. USA, in press.

    Google Scholar 

  12. Fletcher, J.T. 1978. The use of avirulent virus strains to protect plants against the effects of virulent strains. Ann. Appl. Biol. 89: 110–114.

    Article  Google Scholar 

  13. Hernalsteens, J.-P.; Thia-Toong, L.; Schell, J.; and Van Montagu, M. 1984. An Agrobacterium-transformed cell culture from the mono cot Asparagus officinalis. EMBO J. 3(13): 3039–3041.

    PubMed  CAS  Google Scholar 

  14. Hoekema, A.; Hirsch, P.R.; Yooykass, P.J.J.; and Schilperoort, R.A. 1983. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.

    Article  CAS  Google Scholar 

  15. Hooykaas-Van Slogteren, G.M.S.; Hooykaas, P.J.J.; and Schilperoort, R.A. 1984. Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature 311: 763–764.

    Article  Google Scholar 

  16. Horsch, R.B.; Fry, J.E.; Hoffman, N.L.; Eichholtz, D.; Rogers, S.G.; and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Article  CAS  Google Scholar 

  17. Howard, E.A.; Danna, K.; Dennis, E.S.; and Peacock, W.J. 1985. Transient expression in maize. In Plant Genetics, ARCO-UCLA Symposium, in press.

    Google Scholar 

  18. Llewellyn, D.J.; Dennis, E.S.; and Peacock, W.J. 1985. The alcohol dehydrogenase genes of maize: expression studies in tobacco çells. In Molecular Form and Function of the Plant Genome. Proceedings of the NATO Advanced Studies Institute. Renesse, Netherlands: Plenum Press, in press.

    Google Scholar 

  19. Lörz, H.; Baker, B.; and Schell, J. 1985. Gene transfer to cereal cells mediated by protoplast transformation. Molec. Gen. Genet., in press.

    Google Scholar 

  20. McClintock, B. 1956. Controlling elements and the gene. Cold S.H. Symp. Quant. Biol. 21: 197–216.

    CAS  Google Scholar 

  21. Nagao, R.T.; Shah, D.M.; Eckenrode, V.K.; and Meagher, R.B. 1981. Multigene family of actin-related sequences isolated from a soybean genomic library. DNA 1(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Paszkowski, J.; Shillito, R.D.; Saul, M.; Mandák, V.; Hohn, T.; Hohn, B. ; and Potrykus, I. 1984. Direct gene transfer to plants. EMBO J. 3(12): 2717–2722.

    PubMed  CAS  Google Scholar 

  23. Peacock, W.J.; Dennis, E.S.; Gerlach, W.L.; Sachs, M.M.; and Schwartz, D. 1985. Insertion and excision of Ds controlling elements in maize. In Recombination at the DNA Level. Cold S.H. Symp. Quant. Biol. 49, in press.

    Google Scholar 

  24. Roper, M.M. 1983. Field measurements of nitrogenase activity in soils amended with wheat straw. Aust. J. Agric. Res 34: 725–739.

    Article  Google Scholar 

  25. Schöffl, F., and Key, J.L. 1982. An analysis of mRNAs for a group of heat shock proteins of soybean using cloned cDNAs. J. Molec. Appl. Gen. 1: 301–314.

    Google Scholar 

  26. Van den Broeck, G.; Timko, M.P.; Kausch, A.P.; Cashmore, A.R.; Van Montagu, M.; and Herrera-Estrella, L. 1985. Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature 313: 358–363.

    Article  PubMed  Google Scholar 

  27. Whitfeld, P.R., and Bottomley, W. 1983. Organization and structure of chloroplast genes. Ann. Rev. Plant Physiol. 34: 279–310.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Peacock, W.J., Dennis, E.S. (1986). Plant Gene Engineering and Plant Agriculture. In: Silver, S. (eds) Biotechnology: Potentials and Limitations. Dahlem Workshop Reports, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70535-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70535-9_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70537-3

  • Online ISBN: 978-3-642-70535-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics