Skip to main content

The Future Role in Medicine of Proteins Made by Genetic Engineering

  • Conference paper
  • 83 Accesses

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 35))

Abstract

Most of the efforts in the pharmaceutical industry are directed toward human medicine, but quite often these concepts and breakthroughs also find parallel applications in veterinary medicine. However, we will not discuss here those possible applications to veterinary science which are not primarily directed towards alleviation of disease such as the possible use of growth hormones in animal husbandry. The term “genetic engineering” will be used to designate the cloning of genes in a heterologous genetic context, and especially the efficient expression of these cloned genes in heterologous cells. Therefore, the use of chemically synthesized peptides in medicine will not be further considered here. It is generally accepted that the cutoff for economical chemical synthesis of peptides is about 20–30 amino acids; above that, genetic engineering methodology becomes the method of choice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Content, J.; De Wit, L.; Derynck, R.; De Clercq, E.; and Fiers, W. 1982. In vitro cotranslation processing of human pre interferon β1 enhances its biological activity. Virology 122: 466–470.

    Article  PubMed  CAS  Google Scholar 

  2. Crea, R.; Kraszewski, A.; Hirose, T.; and Itakura, K. 1978. Chemical synthesis of genes for human insulin. Proc. Natl. Acad. Sci. USA 75: 5765–5769.

    Article  PubMed  CAS  Google Scholar 

  3. Derynck, R.; Content, J.; De Clercq, E.; Volckaert, G.; Tavernier, J.; Devos, R.; and Fiers, W. 1980. Isolation and structure of a human fibroblast interferon gene. Nature 285: 542–546.

    Article  PubMed  CAS  Google Scholar 

  4. Devos, R.; Cheroutre, H.; Taya, Y.; Degrave, W.; Van Heuverswyn, H.; and Fiers, W. 1982. Molecular cloning of human immune interferon cDNA and its expression in eukaryotic cells. Nucl. Acids Res. 10: 2487–2501.

    Article  PubMed  CAS  Google Scholar 

  5. Devos, R.; Plaetinck, G.; Cheroutre, H.; Simons, G.; Degrave, W.; Tavernier, J.; Remaut, E.; and Fiers, W. 1983. Molecular cloning of human interleukin 2 cDNA and its expression in E. coli. Nucl. Acids Res. 11: 4307–4323.

    Article  PubMed  CAS  Google Scholar 

  6. Edge, M.D.; Greene, S.R.; Heathcliffe, G.R.; Meacock, P.A.; Schuch, W.; Scanlon, D.B.; Atkinson, T.C.; Newton, C.R.; and Markham, S.F. 1981. Total synthesis of a human leucocyte interferon gene. Nature 292: 756–762.

    Article  PubMed  CAS  Google Scholar 

  7. Gray, P., et al. 1982. Expression of human immune interferon cDNA in E. coli and monkey cells. Nature 295: 503–508.

    Article  PubMed  CAS  Google Scholar 

  8. Itakura, K.; Hirose, T.; Crea, R.; Riggs, A.D.; Heyneker, H.L.; Bolivar, F. ; and Boyer, H.W. 1977. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198: 1056–1063.

    Article  PubMed  CAS  Google Scholar 

  9. Kaufman, R.J., and Sharp, P.A. 1982. Construction of a modular dihydrofolate reductase cDNA gene: Analysis of signals utilized for efficient expression. Molec. Cell. Biol. 2: 1304–1319.

    PubMed  CAS  Google Scholar 

  10. Mark, D.V.; Ru, S.D.; Creasey, A.; Yaniamoto, R.; and Lin, L. 1984. Site-specific mutagenesis of the Human Fibroblast Interferon Gene: A structure-function analysis of the protein. Proc. Natl. Acad. Sci. USA 81: 5662–5666.

    Article  PubMed  CAS  Google Scholar 

  11. Nagata, S.; Taira, H.; Hall, A.; Johnsrud, L.; Streuli, M.; Ecsodi, J.; Boll, W.; Cantell, K.; and Weissmann, C. 1980. Synthesis in E. coli of a polypeptide with human leukocyte interferon activity. Nature 284: 316–320

    Article  PubMed  CAS  Google Scholar 

  12. Okayama, H., and Berg, P. 1982. High-efficiency cloning of full length cDNA. Molec. Cell. Biol. 2: 161–170.

    PubMed  CAS  Google Scholar 

  13. Palva, I.; Petterson, R.F.; Kalkkinen, N.; Lehtovaara, P.; Sarvas, M.; Söderland, H.; Takkinen, K.; and Kääriäinnen, L. 1981. Nucleotide sequence of the promoter and NH2-terminal signal peptide region of the α-amylase gene from Bacillus amyloliquefaciens. Gene 15: 43–51.

    Article  PubMed  CAS  Google Scholar 

  14. Scahill, S.J.; Devos, R.; Van der Heyden, J.; and Fiers, W. 1983. Expression and characterization of the product of a human immune interferon cDNA gene in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 80: 4654–4658.

    Article  PubMed  CAS  Google Scholar 

  15. Simons, G.; Remaut, E.; Allet, B.; and Fiers, W. 1984. High-level expression of human interferon gamma in Escherichia coli under control of the pL promoter of bacteriophage lambda. Gene 28: 55–64.

    Article  PubMed  CAS  Google Scholar 

  16. Taniguchi, T.; Matsui, H.; Fujita, T.; Takaoka, C.; Kashima, N.; Yoshimoto, R.; and Hamuro, J. 1983. Structure and expression of a cloned cDNA for human interleukin-2. Nature 302: 305–310.

    Article  PubMed  CAS  Google Scholar 

  17. Taniguchi, T.; Sakai, M.; Fujii-Kuriyama, Y.; Muramatsu, M.; Kobayashi, S.; and Sudo, T. 1979. Construction and identification of a bacterial plasmid containing the human fibroblast interferon gene sequence. Proc. Jpn. Acad. 55(B): 464–469.

    Article  CAS  Google Scholar 

  18. Toole, J.J., et al. 1984. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312: 342–347.

    Article  PubMed  CAS  Google Scholar 

  19. Wood, W.I., et al. 1984. Expression of active human factor VIII from recombinant DNA clones. Nature 312: 330–337.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Fiers, W. (1986). The Future Role in Medicine of Proteins Made by Genetic Engineering. In: Silver, S. (eds) Biotechnology: Potentials and Limitations. Dahlem Workshop Reports, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70535-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70535-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70537-3

  • Online ISBN: 978-3-642-70535-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics