A Modern Approach to Live Vaccines: Recombinant Poxviruses

  • E. Paoletti
  • M. E. Perkus
  • A. Piccini
  • B. R. Lipinskas
  • S. R. Mercer
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 35)


A technique for preparing live recombinant vaccines is described. The technique is a blend of old and new technologies. Vaccinia virus, used for almost two hundred years in the immunoprophylaxis of smallpox, has been engineered by recombinant DNA technologies to express foreign genetic information derived from heterologous pathogens. This recombinant live vaccine virus has been shown to elicit important immunological responses to these foreign antigens on inoculation of the recombinant virus into animals. Significantly, a number of studies have shown that vaccination of laboratory animals with these recombinant viruses results in protecting these animals against disease on subsequent challenge with the heterologous infectious agent. Vaccinia virus recombinants expressing the influenza virus hemagglutinin, the herpes simplex virus glycoprotein D, the hepatitis B virus surface antigen, the rabies virus glycoprotein, and a malarial parasite antigen are described and the biological properties of these recombinant viruses as live immunogens are detailed. A brief description of the problems and future prospects is included.


Vaccinia Virus Live Vaccine Recombinant Vaccinia Virus Virus Surface Antigen Plaque Reduction Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Baxby, D. 1981. Jenner’s Smallpox Vaccine: The Riddle of Vaccinia Virus and Its Origin. London: Heinemann Educational Books Ltd.Google Scholar
  2. (2).
    Bennink, J.R.; Yewdell, J.W.; Smith, G.L.; Moller, C.; and Moss, B. 1984. Recombinant vaccinia virus primes and stimulates influenza haemagglutinin-specific cytotoxic T cells. Nature 311: 578–579.PubMedCrossRefGoogle Scholar
  3. (3).
    Kieny, M.P.; Lathe, R.; Drillien, D.; Spehner, D.; Skory, S.; Schmitt, D. ; Wiktor, T.; Koprowski, H.; and Lecocq, J.P. 1984. Expression of rabies virus glycoprotein from a recombinant vaccinia virus. Nature 312: 163–166.PubMedCrossRefGoogle Scholar
  4. (4).
    Long, D.; Madara, T.J.; Ponce de Leon, M.; Cohen, G.H.; Montgomery, P.C.; and Eisenberg, R.J. 1984. Glycoprotein D protects mice against lethal challenge with herpes simplex virus types 1 and 2. Infect. Immun. 43: 761–764.PubMedGoogle Scholar
  5. (5).
    Mackett, M.; Smith, G.L.; and Moss, B. 1982. Vaccinia virus: A selectable eukaryotic cloning and expression vector. Proc. Natl. Acad. Sci. USA 79: 7415–7419.PubMedCrossRefGoogle Scholar
  6. (6).
    Mackett, M.; Smith, G.L.; and Moss, B. 1984. General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J. Virol. 49: 857–864.PubMedGoogle Scholar
  7. (7).
    Moss, B.; Smith, G.L.; Gerin, J.L.; and Purcell, R.H. 1984. Live recombinant vaccinia virus protects chimpanzees against hepatitis B. Nature 311: 67–69.PubMedCrossRefGoogle Scholar
  8. (8).
    Nakano, E.; Panicali, D.; and Paoletti, E. 1982. Molecular genetics of vaccinia virus: Demonstration of marker rescue. Proc. Natl. Acad. Sci. USA 79: 1593–1596.PubMedCrossRefGoogle Scholar
  9. (9).
    Panicali, D.; Davis, S.W.; Weinberg, R.L.; and Paoletti, E. 1983. Construction of live vaccines by using genetically engineered poxviruses: Biological activity of recombinant vaccinia virus expressing influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 80: 5364–5368.PubMedCrossRefGoogle Scholar
  10. (10).
    Panicali, D., and Paoletti, E. 1982. Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proc. Natl. Acad. Sci. USA 79: 4927–4931.PubMedCrossRefGoogle Scholar
  11. (11).
    Paoletti, E.; Lipinskas, B.R.; Samsonoff, C.; Mercer, S.; and Panicali, D. 1984. Construction of live vaccines using genetically engineered poxviruses: Biological activity of vaccinia virus recombinants expressing the hepatitis B virus surface antigen and the herpes simplex virus glycoprotein D. Proc. Natl. Acad. Sci. USA 81: 193–197.PubMedCrossRefGoogle Scholar
  12. (12).
    Paoletti, E.; Lipinskas, B.R.; Woolhiser, S.; and Flaherty, L. 1984. Live recombinant poxvirus vaccine directed against herpes simplex. In Herpesvirus: UCLA Symposia on Molecular and Cellular Biology, New Series, ed. F. Rapp, vol. 21, pp. 663–676. New York: Alan R. Liss.Google Scholar
  13. (13).
    Paoletti, E.; Panicali, D.; Lipinskas, B.R.; Mercer, S.; Wright, M.; and Samsonoff, C. 1984. Construction of live recombinant vaccines using genetically-engineered poxviruses. In Modern Approaches to Vaccines: Molecular and Chemical Basis of Virus Virulence and Immunogenicity, eds. R.M. Chanock and R.A. Lerner, pp. 295–299. New York: Cold Spring Harbor Laboratory.Google Scholar
  14. (14).
    Paoletti, E.; Perkus, M.E.; Piecini, A.; Wos, S.; and Lipinskas, B.R. 1984. A novel approach to the preparation of live vaccines: Genetically engineered poxviruses. In The 1984 International Symposium on Medical Virology, ed. L.M. de la Maza. Philadelphia: The Franklin Institute Press.Google Scholar
  15. (15).
    Paoletti, E.; Perkus, M.E.; Piccini, A.; Wos, S.; Lipinskas, B.R.; and Mercer, S.R. 1985. Genetically engineered poxviruses expressing multiple foreign genes. In Modern Approaches to Vaccines, eds. R.M. Chanock and R.A. Lerner, pp. 147–150. New York: Cold Spring Harbor Laboratory.Google Scholar
  16. (16).
    Paoletti, E.; Weinberg, R.L.; Davis, S.W.; and Davis, M. 1984. Genetically engineered poxviruses: A novel approach to the construction of live vaccines. Vaccine 2: 204–208.PubMedCrossRefGoogle Scholar
  17. (17).
    Sam, C.K., and Dumbell, K.R. 1981. Expression of poxvirus DNA in co-infected cells and marker rescue of thermosensitive mutants by subgenomic fragments of DNA. Ann. Virol. (Inst. Pasteur) 132E: 135–150.CrossRefGoogle Scholar
  18. (18).
    Smith, G.L.; Godson, G.N.; Nussenzweig, V.; Nussenzweig, R.S.; Barnwell, J.; and Moss, B. 1984. Plasmodium knowlesi sporozoite antigen: Expression by infectious recombinant vaccinia virus. Science 224: 397–399.PubMedCrossRefGoogle Scholar
  19. (19).
    Smith, G.L.; Mackett, M.; and Moss, B. 1983. Infectious vaccinia virus recombinants that express hepatitis B virus surface antigen. Nature 302: 490–495.PubMedCrossRefGoogle Scholar
  20. (20).
    Smith, G.L.; Mackett, M.; Murphy, B.R.: and Moss, B. 1984. Vaccinia virus recombinants expressing genes from pathogenic agents have potential as live vaccines. In Modern Approaches to Vaccines, eds. R.M. Chanock and R.A. Lerner, pp. 313–317. New York: Cold Spring Harbor Laboratory.Google Scholar
  21. (21).
    Smith, G.L., and Moss, B. 1983. Infectious poxvirus vectors have capacity for at least 25 000 base pairs of foreign DNA. Gene 25: 21–28.PubMedCrossRefGoogle Scholar
  22. (22).
    Smith, G.L.; Murphy, B.R.; and Moss, B. 1983. Construction and characterization of an infectious vaccinia virus recombinant that expresses the influenza hemagglutinin gene and induces resistance to influenza virus infection in hamsters. Proc. Natl. Acad. Sci. USA 80: 7155–7159.PubMedCrossRefGoogle Scholar
  23. (23).
    Weir, J.P.; Bajszar, G.; and Moss, B. 1982. Mapping of the vaccinia virus thymidine kinase gene by marker rescue and by cell-free translation of selected mRNA. Proc. Natl. Acad. Sci. USA 79: 1210–1214.PubMedCrossRefGoogle Scholar
  24. (24).
    Wiktor, T.J.; Macfarland, R.I.; Reagan, K.J.; Dietzschold, B.; Curtis, P.J.; Wunner, W.H.; Kieny, M.P.; Lathe, R.; Lecocq, J.P.; Mackett, M.; Moss, B.; and Koprowski, H. 1984. Protection from rabies by a vaccinia virus recombinant containing the rabies virus glycoprotein gene. Proc. Natl. Acad. Sci. USA 81: 7194–7198.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • E. Paoletti
    • 1
  • M. E. Perkus
    • 1
  • A. Piccini
    • 1
  • B. R. Lipinskas
    • 1
  • S. R. Mercer
    • 1
  1. 1.Laboratory of Immunology Wadsworth Center for Laboratories and ResearchNew York State Dept. of HealthAlbanyUSA

Personalised recommendations