Skip to main content

Laminar Profiles of [K+]O and [Ca2+]O in Region CA1 of the Hippocampus of Kindled Rats

  • Chapter
Ion Measurements in Physiology and Medicine

Abstract

Daily repeated tetanic stimulation of mild physiological intensity leads, in many parts of the brain, to the gradual development of an epileptogenic focus. This treatment (kindling) may finally even result in generalized tonic clonic convulsions. Since its first description in 1969 by Goddard [7], this experimental model of epilepsy has drawn considerable attention as one of the few models of permanent plasticity in the adult vertebrate brain. Much work has been devoted to defining optimal parameters for stimulation, to determine the sensitivity for kindling of different regions of the brain in a variety of species, and to exclude the phenomenon from being an implantation artifact (reviews are given by Racine [29] and McNamara et al. [20]. Despite the fact that a lot of knowledge has been acquired in this way, still little is known about the cellular mechanisms that underlie kindling epilepsy. Changes in polarity of epileptiform transients recorded in vivo during kindling epileptogenesis suggested that some dendritic process might be involved [16, 32]. Furthermore, it is known from several other models of epilepsy that variations in the concentrations of calcium and potassium in the extracellular space play an important role in the stability of neuronal circuits and that the concentrations of these ions can vary considerably during epileptiform activity [10,13, 23, 24–26, 31, 33]. In order to investigate the underlying mechanisms of kindling in more detail at a cellular level, we combined the in vivo model of kindling with the in vitro method of hippocampal slices [3,11,18]. The in vitro technique enabled us to record accurately, in tissue obtained from kindled rats, the laminar profiles of changes in extracellular potassium [K+]O and extracellular calcium [Ca2+]O induced by different methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benniger C, Kadis J, Prince DA (1980) Extracellular calcium and potassium changes in hippo- campal slices. Brain Res 187:165–182

    Article  Google Scholar 

  2. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40: 432–439

    Article  PubMed  CAS  Google Scholar 

  3. Dingledine R, Dodd J, Kelly JS (1980) The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Methods 2: 323–362

    Article  PubMed  CAS  Google Scholar 

  4. Dunlap X, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol (Lond) 317: 519–535

    CAS  Google Scholar 

  5. Gardner-Medwin AR (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J Physiol (Lond) 335: 353–374

    CAS  Google Scholar 

  6. Gardner-Medwin AR, Nicholson C (1983) Changes of extracellular potassium activity by electrical current through brain tissue in the rat. J Physiol (Lond) 335: 375–392

    CAS  Google Scholar 

  7. Goddard GV, Mclntyre PC, Leech CK (1969) A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol 25: 295–330

    Article  PubMed  CAS  Google Scholar 

  8. Heinemann U, Lux HD (1975) Undershoots following stimulus induced rises of extracellular potassium concentration in cerebral cortex of cat. Brain Res 93: 63–76

    Article  PubMed  CAS  Google Scholar 

  9. Heinemann U, Lux HD, Gutnick M (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27: 237–243

    Article  PubMed  CAS  Google Scholar 

  10. Heinemann U, Konnerth A, Lux HD (1981) Stimulation induced changes in extracellular free calcium in normal cortex and chronic alumina cream foci of cats. Brain Res 231: 246–250

    Article  Google Scholar 

  11. Kerkut GA, Wheal HV (eds) (1981) Electrophysiology of isolated mammalian CNS preparations. Academic, London

    Google Scholar 

  12. Krnjevic K, Morris ME (1981) Electrical and functional correlates of changes in transmembrane ionic gradients produced by neuronal activity in the central nervous system. In: Zeuthen (ed) The application of ion-selective micro-electrodes. Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  13. Krnjevic K, Morris ME, Reiffenstein RJ (1980) Changes in extracellular Ca2+ and K+ activity accompanying hippocampal discharges. Can J Physiol Pharmacol 58: 579–583

    Article  PubMed  CAS  Google Scholar 

  14. Leung LS (1979 a) Orthodromic activation of hippocampal CA1 region of the rat. Brain Res 176:49–67

    Article  PubMed  CAS  Google Scholar 

  15. Leung LS (1979b) Potentials evoked by alvear tract in hippocampal CA1 region in rats: II Spatial field analysis. J Neurophysiol 42:1571–1581

    PubMed  CAS  Google Scholar 

  16. Lopes da Silva FH, Wadman WJ, Leung LS, van Hulten K (1982) Long-term changes in EEG and evoked potentials during the development of an epileptic focus (by kindling) in the prepyri- form cortex in the dog. Electroencephalogr Clin Neurophysiol [Suppl] 36: 274–287

    CAS  Google Scholar 

  17. Lux HD, Neher E (1973) The equilibration time course of [K+]O in cat cortex. Exp Brain Res 17: 190–205

    Article  PubMed  CAS  Google Scholar 

  18. Lynch G, Schubert P (1980) The use of the in vitro brain slice for multidisciplinary studies of synaptic function. Ann Rev Neurosci 3:1–22

    Article  PubMed  CAS  Google Scholar 

  19. Marciani MG, Louvel J, Heinemann U (1982) Aspartate induced changes in extracellular free calcium in “in vitro” hippocampal slices of rats. Brain Res 238: 272–277

    Article  PubMed  CAS  Google Scholar 

  20. McNamara JO, Byrne MC, Dasheif RM, Fitz JG (1980) The kindling model of epilepsy: a review. Prog Neurobiol 15:139–159

    Article  PubMed  CAS  Google Scholar 

  21. Nadler JV, Vaca KW, White WF, Lynch GS, Cotman CW (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature 260: 538–540

    Article  PubMed  CAS  Google Scholar 

  22. Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol (Lond) 321: 225–257

    CAS  Google Scholar 

  23. Ogata N, Hon N, Katsuda N (1976) The correlation between extracellular potassium concentration and hippocampal epileptic activity in vitro. Brain Res 110: 371–375

    Article  PubMed  CAS  Google Scholar 

  24. Oliver AP, Carman JS, Hoffner BJ, Wyatt RJ (1980) Effect of altered calcium ion concentration on interictal spike generation in the hippocampal slice. Exp Neurol 68: 489–499

    Article  PubMed  CAS  Google Scholar 

  25. Prince DA (1978) Neurophysiology of epilepsy. Annu Rev Neurosci 1: 395–415

    Article  PubMed  CAS  Google Scholar 

  26. Pumain R, Kurcewicz I, Louvel J (1983) Fast extracellular calcium transients: involvement in epileptic processes. Science 222:177–179

    Article  PubMed  CAS  Google Scholar 

  27. Racine RJ (1972 a) Modification of seizure activity by electrical stimulation. I After-discharge threshold. Electroencephalogr Clin Neurophysiol 32: 269–279

    Article  PubMed  CAS  Google Scholar 

  28. Racine RJ (1972 b) Modification of seizure activity by electrical stimulation. II Motor seizure. Electroencephalogr Clin Neurophysiol 32: 281–294

    Article  PubMed  CAS  Google Scholar 

  29. Racine R (1978) Kindling: The first decade. J Neurosurg 3:234–252

    Article  CAS  Google Scholar 

  30. Racine RJ, Hafner S (1983) Long-term potentiation phenomena in the rat limbic forebrain. Brain Res 260: 217–231

    Article  PubMed  CAS  Google Scholar 

  31. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177

    Article  PubMed  CAS  Google Scholar 

  32. Wadman WJ, Lopes da Silva FH, Leung LS (1983) Two types of interictal transients of reversed polarity in rat hippocampus during kindling. Electroencephalogr Clin Neurophysiol 55: 314–319

    Article  PubMed  CAS  Google Scholar 

  33. Yaari Y, Konnerth A, Heinemann U (1983) Spontaneous epileptiform activity of CA1 hippocampal neurons in low extracellular calcium solutions. Exp Brain Res 51:153–156

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wadman, W.J., Heinemann, U. (1985). Laminar Profiles of [K+]O and [Ca2+]O in Region CA1 of the Hippocampus of Kindled Rats. In: Kessler, M., et al. Ion Measurements in Physiology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70518-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70518-2_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15468-6

  • Online ISBN: 978-3-642-70518-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics