Skip to main content

Extracellular K+ Accumulation in the Spinal Cord and its Role in Primary Afferent Depolarization and Poststimulation Analgesia

  • Chapter
Ion Measurements in Physiology and Medicine
  • 79 Accesses

Abstract

The increase in extracellular K+ concentration occurring in nervous tissue during and after its excitation may be a powerful agent in the regulation of central nervous system (CNS) function, especially neuronal excitability, intercellular communication, and glial cell function. In 1971, J. L. Walker first introduced the K+-selective microelectrode filled with a liquid ion exchanger, which made it possible to determine the activity of K+ in the CNS directly [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Czéh G, Kříž N, Syková E (1981) Extracellular potassium accumulation in the frog spinal cord induced by stimulation of the skin and ventrolateral columns. J Physiol (Lond) 320: 57–72

    Google Scholar 

  2. Kříž N, Syková E, Vyklický L (1975) Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. J Physiol (Lond) 249:167–182

    Google Scholar 

  3. Krnjević K, Morris ME (1972) Extracellular K+ activity and slow potentials changes in spinal cord and medulla. Can J Physiol Pharmacol 53:1214–1217

    Article  Google Scholar 

  4. Krnjević K, Morris ME (1975) Factors determining the decay of K+ potentials and focal potentials in the central nervous system. Can J Physiol Pharmacol 53: 923–934

    Article  PubMed  Google Scholar 

  5. Lux HD, Neher E (1973) The equilibration time course of [K+]O in cat cortex. Exp Brain Res 17: 190–205

    Article  PubMed  CAS  Google Scholar 

  6. Prince DA, Lux HD, Neher E (1973) Measurement of extracellular potassium activity in cat cortex. Brain Res 50: 489–495

    Article  PubMed  CAS  Google Scholar 

  7. Satoh T, Watanabe K, Eguchi K (1979) Enhancement during REM sleep of extracellular potassium ion activity in the reticular formation. Brain Res 174:180–183

    Article  PubMed  CAS  Google Scholar 

  8. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Ann Rev Physiol 41:159–177

    Article  CAS  Google Scholar 

  9. Syková E (1981) K+ changes in the extracellular space of the spinal cord and their physiological role. J Exp Biol 95:93–109

    PubMed  Google Scholar 

  10. Syková E (1983) Extracellular K+ accumulation in the central nervous system. Prog Biophys Mol Biol 42:135–189

    Article  PubMed  Google Scholar 

  11. Syková E, Vyklicky (1977) Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg2+ concentration. Neurosci Lett 4:161–165

    Article  PubMed  Google Scholar 

  12. Syková E, Rothenberg S, Krekule I (1974) Changes of extracellular potassium concentration during spontaneous activity in the mesencephalic reticular formation of the rat. Brain Res 79: 333–337

    Article  PubMed  Google Scholar 

  13. Syková E, Shirayev B, Kříž N, Vyklický L (1976) Accumulation of extracellular potassium in the spinal cord of frog. Brain Res 106:413–417

    Article  PubMed  Google Scholar 

  14. Syková E, Kříž N, Preis P (1983) Elevated extracellular potassium concentration in unstimulated spinal dorsal horns of frogs. Neurosci Lett 43: 293–298

    Article  PubMed  Google Scholar 

  15. Vyklický L, Syková E (1980) Effects of increased K+ activity on the flexor reflex in the isolated spinal cord of the frog. Neurosci Lett 19: 203–207

    Article  PubMed  Google Scholar 

  16. Vyklický L, Syková E, Kříž N, Ujec E (1972) Post-stimulation changes of extracellular potassium concentration in the spinal cord of the rat. Brain Res 45: 608–611

    Article  PubMed  Google Scholar 

  17. Vyskočil F, Kříž N, Bureš J (1972) Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats. Brain Res 39: 255–259

    Article  PubMed  Google Scholar 

  18. Walker JL Jr (1971) Ion specific liquid ion exchanger microelectrodes. Anal Chem 43:89A–93A

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Syková, E., Kříž, N., Hájek, I. (1985). Extracellular K+ Accumulation in the Spinal Cord and its Role in Primary Afferent Depolarization and Poststimulation Analgesia. In: Kessler, M., et al. Ion Measurements in Physiology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70518-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70518-2_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15468-6

  • Online ISBN: 978-3-642-70518-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics