Skip to main content

Surface and Volume Resistivity of Pyrex Glass Used for Liquid Membrane Ion-Sensitive Microelectrodes

  • Chapter
Ion Measurements in Physiology and Medicine

Abstract

The essence of a liquid membrane ion-sensitive microelectrode is a column of sensor lodged in the tip of a glass micropipette. For it to function well, the electrical resistivity of the surface of the glass crmust be high, and so must the resistance through the wall of the pipette. The behavior of a fine-tipped microelectrode depends on many factors, and direct examination of electrode responses has led to conflicting ideas about leaks (e.g., [11, 17]). We have therefore made measurements of resistance on the most commonly used glass, Pyrex (Corning 7740), on samples of defined geometry (tubes), and with the atmospheric contamination of a typical physiological laboratory. In addition, we have drawn on literature describing the use of new analytical techniques for studying glass surfaces, much of this research having been done with a view to applications in capillary column chromatography or fiber optics. We will suggest that the physiologist’s problems are confined to the extreme tip of the microelectrode, that they are unlikely to be due to hydration of the glass, and that they might be partly due to cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams R, McMillan PW (1977) The decoration of surface flaws in glass. J Mater Sci 12: 2544–2546

    Article  CAS  Google Scholar 

  2. Ammann D, Morf WE, Anker P, Meier PC, Pretsch E, Simon W (1983) Neutral carrier based ion-selective electrodes. Ion-Selective Electrode Rev 5: 3–92

    CAS  Google Scholar 

  3. Charles RJ (1964) Phase separation in borosilicate glasses. J Am Ceram Soc 47: 559–563

    Article  CAS  Google Scholar 

  4. Coles J A, Orkand RK, Munoz JL (1983) When the photoreceptors in the retina of the honeybee drone are stimulated, K+ activity in the glial cells rises more than Na+ activity falls. Experientia 39:630

    Google Scholar 

  5. Hulanicki A, Lewandowski R (1974) Some properties of ion-selective electrodes based on poly (vinyl chloride) membranes with liquid-ion-exchanger. Chemia Anal (Warsaw) 19: 53–61

    CAS  Google Scholar 

  6. Khuri RN, Agulian SK (1981) Intracellular electrochemical potentials: skeletal muscle vs epithelial, steady-state vs kinetics. In: Syková E, Hnik P, Vyclický L (eds) Ion-selective microelec- trodes and their use in excitable tissues. Plenum, New York pp 67–89

    Google Scholar 

  7. Lanford WA (1977) Glass hydration: a method of dating glass objects. Science 196: 975–976

    Article  PubMed  CAS  Google Scholar 

  8. Lanter E, Steiner RA, Ammann D, Simon W (1982) Critical evaluation of the applicability of neutral carrier-based calcium selective microelectrodes. Anal Chim Acta 135: 51–59

    Article  CAS  Google Scholar 

  9. Lee ML, Wright BW (1980) Preparation of glass capillary columns for gas chromatography. J Chromatogr 184: 235–312

    Article  CAS  Google Scholar 

  10. Levy S (1979) Mesure du Ca intracellulaire libre dans les photorécepteurs du faux-bourdon (Apis mellifera) au moyen de microélectrodes sélectives au Ca: effets de la photostimulation. M. Sc. Thesis, Geneva University

    Google Scholar 

  11. Lewis SL, Wills NK (1980) Resistive artifacts in liquid-ion exchanger microelectrode estimates of Na+ activity in epithelial cells. Biophys J 31:127–128

    Article  PubMed  CAS  Google Scholar 

  12. Munoz JL, Deyhimi F, Coles JA (1983) Silanization of glass in the making of ion-sensitive mi- croelectrodes. J Neurosci Methods 8: 231–247

    Article  PubMed  CAS  Google Scholar 

  13. Oehme M, Kessler M, Simon W (1976) Neutral carrier Ca2+- microelectrode. Chimia 30: 204–206

    CAS  Google Scholar 

  14. Takayama K, Susa N, Hirai M, Uchida N (1977) Observation of surface flaws in fused silica optical fibers. Appl Phys Lett 30:155–157

    Article  CAS  Google Scholar 

  15. Thomas RC (1978) Ion-sensitive intracellular microelectrodes. Academic, London

    Google Scholar 

  16. Tsien RY, Rink TJ (1980) Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochem Biophys Acta 599: 623–638

    Article  PubMed  CAS  Google Scholar 

  17. Tsien RY, Rink TJ (1981) Ca2+-selective electrodes: a novel pvc-gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Methods 4: 73–86

    Article  PubMed  CAS  Google Scholar 

  18. Wiederhorn SM, Evans AG, Roberts DE (1974) A fracture mechanics study of the Skylab windows. In: Bradt RC, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics, vol 2. Plenum, New York, pp 829–841

    Google Scholar 

  19. Wright BW, Lee ML, Graham SW, Phillips LV, Hercules DM (1980) Glass-surface analytical studies in the preparation of open tubular columns for gas-chromatography. J Chromatogr 199: 355–369

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Coles, J.A., Munoz, J.L., Deyhimi, F. (1985). Surface and Volume Resistivity of Pyrex Glass Used for Liquid Membrane Ion-Sensitive Microelectrodes. In: Kessler, M., et al. Ion Measurements in Physiology and Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70518-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70518-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15468-6

  • Online ISBN: 978-3-642-70518-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics