Skip to main content

Part of the book series: Bayer-Symposium ((BAYER-SYMP,volume 9))

  • 76 Accesses

Abstract

The responses of isolated large arteries to a number of vasodilators depend on the presence of endothelial cells (for a recent review see Furchgott 1983). The mechanism underlying this endothelium-dependent reactivity has been partly elucidated. The significance of the vasoactivity of the endothelium, depends on whether it applies to vessels and circumstances that participate in regulation of cardiovascular function and on whether it is altered in cardiovascular pathologies.

Part of the authors research was performed at the Department of Human Physiology, University of California, Davis, USA and was supported by Fogarty International Research Fellowship TW03322-01

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Cherry PD, Furchgott RF, Zawadzki JV, Jothianandan D (1982) The role of endothelial cells in the relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci USA 79:2106–2110.

    Article  PubMed  CAS  Google Scholar 

  • Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonine. Nature 305:627–630.

    Article  PubMed  CAS  Google Scholar 

  • De Mey JG, Gray SD (1984) Endothelium-dependent reactivity in resistance vessels. Prog Appl Microc.

    Google Scholar 

  • De Mey JG, Vanhoutte PM (1978) Calcium-dependency of the direct relaxant effect of acetylcholine on canine femoral artery. Arch Int Pharmacodyn Ther 236:296.

    PubMed  Google Scholar 

  • De Mey JG, Vanhoutte PM (1980) Interaction between Na, K exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ Res 46:826–836.

    PubMed  Google Scholar 

  • De Mey JG, Vanhoutte PM (1981) Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J Physiol (Lond) 316:437–455.

    Google Scholar 

  • De Mey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall. Circ Res 51:439–447.

    PubMed  Google Scholar 

  • De Mey JG, Vanhoutte PM (1983) Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol (Lond) 335:65–74.

    Google Scholar 

  • De Mey JG, Claeys M, Vanhoutte PM (1982) Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery. J Pharmacol Exp Ther 222:166–173.

    PubMed  Google Scholar 

  • De Mey JG, Gray SD, Mulvany MJ (1984) Effects of endothelial demage on reactivity of isolated 200 m arteries. Fed Proc 43:737.

    Google Scholar 

  • Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53:557–573.

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376.

    Article  PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Delgado D, Vlodavsky I (1980) Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc Natl Acad Sci USA 77:4094–4098.

    Article  PubMed  CAS  Google Scholar 

  • Griffith TM, Eduards DH, Lewis MJ, Newby AC, Henderson AH (1984) The nature of endothelium-derived vascular relaxant factor. Nature 308:645–647.

    Article  PubMed  CAS  Google Scholar 

  • MacIntrye DE, Pearson JD, Gordon JL (1978) Localisation and stimulation of prostacyclin production in vascular cells. Nature 271:549–551.

    Article  Google Scholar 

  • Moncada S, Herman AG, Higgs EA, Vane JR (1977) Differential formation of prostacyclin (PGX or PHI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Throm Res 11:323–344.

    Article  CAS  Google Scholar 

  • Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41:19–26.

    PubMed  CAS  Google Scholar 

  • Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352–357.

    PubMed  CAS  Google Scholar 

  • Singer HA, Peach MJ (1982) Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4 (suppl II): 19–25.

    PubMed  CAS  Google Scholar 

  • Van de Voorde J, Leusen I (1983) Role of endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur J Pharmacol 87:113–120.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Mey, J.G. (1985). Endothelium-Dependent Vascular Relaxation. In: Fleckenstein, A., Van Breemen, C., Gross, R., Hoffmeister, F. (eds) Cardiovascular Effects of Dihydropyridine-Type Calcium Antagonists and Agonists. Bayer-Symposium, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70499-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70499-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70501-4

  • Online ISBN: 978-3-642-70499-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics