Neurochemical Investigations into the Human Area Postrema

  • J.-C. Schwartz
  • Y. Agid
  • M.-L. Bouthenet
  • F. Javoy-Agid
  • C. Llorens-Cortes
  • M.-P. Martres
  • H. Pollard
  • N. Sales
  • H. Taquet
Part of the Advances in Applied Neurological Sciences book series (NEUROLOGICAL, volume 3)


It is now well established that the area postrema (AP) participates in the initiation of emetic reflexes elicited in various physiological, pathological or pharmacological circumstances (reviewed by Borison and Wang 1953; Wang 1965; Borison et al. 1981). In addition it is generally assumed that a large number of emetic and anti-emetic agents exert their actions in humans, at least in some cases, by interfering with local neurotransmitter metabolism or with receptors implicated in emetic reflexes (Peroutka and Snyder 1982). Nevertheless there are still a limited number of compounds used to control nausea and vomiting in patients; their efficacy is sometimes limited and their modes of loci of actions not always perfectly understood. Animal experiments are useful for such purposes but, in view of the known species differences in emetic reflexes, we found it of interest to study directly in human AP the presence of various neurotransmitters, their synthesising and inactivating enzymes and their receptors. This neurochemical investigation was performed on the AP dissected out from recently deceased patients and attention was particularly focused on markers of neurotransmitter systems likely to be involved in nausea and vomiting, as suggested by various drug effects, like the cholinergic, opioidergic, histaminergic and catecholaminergic systems. Indeed, one limitation in these kind of studies are the post-mortem alterations which may occur during the time elapsed between death and obtaining the tissue preparations used in the biochemical studies. In order to circumvent to a certain extent this inherent difficulty, we have, in most cases, studied the post-mortem stability of the various markers in the brains of laboratory animals or referred to previous studies on this matter.


Dopamine Receptor Nucleus Tractus Solitarius Area Postrema Histaminergic Neuron Nucleus Caudatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam HM (1961) Histamine in the central nervous system and hypophysis of the dog. In: Kety SS, Elkes J (eds) Regional neurochemistry. Pergamon, London, pp 293–306Google Scholar
  2. Armstrong DM, Pickel VM, Joh TH, Reis DJ, Miller RJ (1981) Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides in area postrema and medial nucleus tractus solitarius of rat brain. J Comp Neurol 196: 505–517PubMedCrossRefGoogle Scholar
  3. Armstrong DM, Ross CA, Pickel VM, Joh TH, Reis DJ (1982) Distribution of dopamine-, nor-adrenaline-, and adrenaline-containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J Comp Neurol 212: 173–187PubMedCrossRefGoogle Scholar
  4. Arrang JM, Garbarg M, Schwartz J-C (1983) Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 302: 1–5CrossRefGoogle Scholar
  5. Barbin G, Palacios JM, Garbarg M, Schwartz J-C, Gaspar P, Javoy-Agid F, Agid Y (1980) L-histidine decarboxylase in the human brain: properties and localization. J Neurochem 35: 400–406PubMedCrossRefGoogle Scholar
  6. Barclay RK, Phillipps MA (1978) Inhibition of the enzymatic degradation of Leu-enkephalin by puromycin. Biochem Biophys Res Commun 81: 1119–1123PubMedCrossRefGoogle Scholar
  7. Baudry M, Martres M-P, Schwartz J-C (1973) The subcellular localization of histidine decarboxylase in various regions of rat brain. J Neurochem 21: 1301–1309PubMedCrossRefGoogle Scholar
  8. Baudry M, Martres M-P, Schwartz J-C (1979) 3H-domperidone: a selective ligand for dopamine receptors. Naunyn Schmiedebergs Arch Pharmacol 308:231–237PubMedCrossRefGoogle Scholar
  9. Bhargava KP, Dixit KS, Palit G (1976) Nature of histamine receptors in the emetic chemoreceptor trigger zone. Br J Pharmacol 57: 211–213PubMedGoogle Scholar
  10. Bhargava KP, Dixit KS, Gupta YK (1981) Enkephalin receptors in the emetic chemoreceptor trigger zone of the dog. Br J Pharmacol 72: 471–475PubMedGoogle Scholar
  11. Borison HL (1959) Effect of ablation of medullary emetic chemoreceptor trigger zone on vomiting responses to cerebral intraventricular injection of adrenalin apomorphine and pilocarpine in the cat. J Physiol (Lond) 147: 172–177Google Scholar
  12. Borison HL (1983) A 1983 neuropharmacologic perspective of space sickness. Brain Behav Evol 23: 7–13PubMedCrossRefGoogle Scholar
  13. Borison HL, Wang SC (1953) Physiology and pharmacology of vomiting. Pharmacol Rev 5: 193–230PubMedGoogle Scholar
  14. Borison HL, Borison R, McCarthy LE (1981) Phylogenic and neurologic aspects of the vomiting process. J Clin Pharmacol 21:23S–29SPubMedCrossRefGoogle Scholar
  15. Brizzee KR, Palazzo MC, Klara PM, Hofer H (1978) Effects of systemic administration of 6hydroxydopamine on the circumventricular organs in non-human primates I. Area postrema. Cell Tissue Res 187: 115–127PubMedCrossRefGoogle Scholar
  16. Brooks MJ, Hubbard JI, Sirett N (1983) Extracellular recording in rat area postrema in vitro and the effects of cholinergic drugs, serotonin and angiotensin II. Brain Res 261:85–90PubMedCrossRefGoogle Scholar
  17. Carpenter DO, Briggs DB, Strominger N (1984) Peptide-induced emesis in dogs. Behav Brain Res 11: 277–281PubMedCrossRefGoogle Scholar
  18. Chang RSL, Tran VT, Snyder SH (1978) Histamine H1-receptors in brain labeled with 3H-mepyramine. Eur J Pharmacol 48: 463–464PubMedCrossRefGoogle Scholar
  19. Creese I, Usdin T, Snyder SH (1979) Guanine nucleotides distinguish between two dopamine receptors. Nature 278: 577–578PubMedCrossRefGoogle Scholar
  20. Cushman DW, Cheung HS, Sabo EF, Ondetti MA (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxylalkanoyl and mercaptoalkanoyl amino-acids. Biochemistry 16: 5484–5491PubMedCrossRefGoogle Scholar
  21. Cuello AC, Sofroniew MV (1984) The anatomy of CNS cholinergic neurons. Trends Neurosci 7: 74–78CrossRefGoogle Scholar
  22. Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci 19: 1161–1174PubMedCrossRefGoogle Scholar
  23. Dietrich WD, Lowry OH, Loewy AD (1982) The distribution of glutamate, GABA and aspartate in the nucleus tractus solitarius of the cat. Brain Res 237: 254–260PubMedCrossRefGoogle Scholar
  24. Emson PC, Arregui A, Clement-Jones U, Sandberg BEB, Rossor M (1980) Regional distribution of methionine-enkephalin and substance P like immunoreactivity in normal human brain and in Huntington’s disease. Brain Res 199: 147–160PubMedCrossRefGoogle Scholar
  25. Farley IJ, Homykiewicz O (1977) Noradrenaline distribution in subcortical areas of the human brain. Brain Res 126: 53–62PubMedCrossRefGoogle Scholar
  26. Fonnum F (1969) Radiochemical microassays for the determination of ChAc and AChE activities. Biochem J 115: 465–472PubMedGoogle Scholar
  27. Garbarg M, Pollard H, Quach TT, Schwartz J-C (1983) Methods in brain histamine research. In: Parvez S, Nagatsu T, Nagatsu I, Parvez H (eds) Methods in biogenic amine research. Elsevier, Amsterdam, pp 623–662Google Scholar
  28. Grämsch C, Höllt V, Mehraein P, Pasi A, Herz A (1979) Regional distribution of methionine enkephalin and ß-endorphin like immunoreactivity in human brain and pituitary. Brain Res 171: 261–270PubMedCrossRefGoogle Scholar
  29. Grämsch C, Höllt V, Pasi A, Mehraein P, Herz A (1982) Immunoreactive dynorphin in human brain and pituitary. Brain Res 233: 65–74PubMedCrossRefGoogle Scholar
  30. Harris AL (1982) Cytotoxic therapy-induced vomiting is mediated via enkephalin pathways. Lancet 1: 714–716PubMedCrossRefGoogle Scholar
  31. Hill SJ, Emson PC, Young JM (1978) The binding of 3H-mepyramine to histamine H1-receptors in guinea-pig brain. J Neurochem 31: 997–1004PubMedCrossRefGoogle Scholar
  32. Javoy-Agid F, Agid Y (1980) Is the mesocortical dopaminergic system involved in Parkinson’s disease? Neurology 30: 1326–1330PubMedGoogle Scholar
  33. Lazareno S, Nahorski SR (1982) Selective labelling of dopamine (D-2) receptors in rat striatum by 3H-domperidone but not by 3H-spiperidone. Eur J Pharmacol 81: 273–285PubMedCrossRefGoogle Scholar
  34. Lindvall O, Björklund A (1983) Dopamine-and norepinephrine-containg neuron systems: their anatomy in the rat brain. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 229–255Google Scholar
  35. Llorens C, Malfroy B, Schwartz J-C, Gacel G, Roques BP, Roy J, Morgat JL, Javoy-Agid F, Agid Y (1982) Enkephalin dipeptidyl carboxypeptidases (enkephalinase) activity: selective radioassay, properties and regional distribution in human brain. J Neurochem 39: 1081–1089PubMedCrossRefGoogle Scholar
  36. Martres M-P, Bouthenet M-L, Sales N, Sokoloff P, Schwartz J-C (1985a) Widespread distribution of brain dopamine receptors evidenced with 125I-iodosulpride, a highly selective ligand. Science 228: 752–755CrossRefGoogle Scholar
  37. Martres M-P, Bouthenet M-L, Sales N, Sokoloff P, Schwartz J-C (1985a) Widespread distribution of brain dopamine receptors evidenced with 125I-iodosulpride, a highly selective ligand. Science 228: 752–755CrossRefGoogle Scholar
  38. Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand [Suppl] 388: 1–40Google Scholar
  39. Palacios JM, Wamsley JK, Kuhar MJ (1981) The distribution of histamine H1-receptors in the rat brain: an autoradiographic study. Neurosci 6: 15–38CrossRefGoogle Scholar
  40. Panula P, Yang HYT, Costa E (1984) Histamine containing neurons in the rat hypothalamus. Proc Natl Acad Sci USA 81: 2572–2576PubMedCrossRefGoogle Scholar
  41. Peroutka SJ, Snyder SH (1982) Antiemetics: neurotransmitter receptor binding predicts therapeutic actions. Lancet 2: 658–659CrossRefGoogle Scholar
  42. Pollard H, Llorens C, Barbin G, Garbarg M, Schwartz J-C (1978) Histamine and histidine de-carboxylase in brainstem nuclei: distribution and decrease after lesions. Brain Res 157: 178–181PubMedCrossRefGoogle Scholar
  43. Pollard H, Pachot I, Legrain P, Buttin G, Schwartz J-C (1985) Development of a monoclonal antibody against L-histidine decarboxylase as a selective tool for the localisation of histamine-synthesizing cells. In: Ganellin CR, Schwartz J-C (eds) Frontiers in histamine research. Pergamon, New York, pp 103–117Google Scholar
  44. Puymirat J, Javoy-Agid F, Gaspar P, Plaska A, Prochiantz A, Agid Y (1979) Post-mortem stability and storage in the cold of brain enzymes. J Neurochem 32: 449–454PubMedCrossRefGoogle Scholar
  45. Quach TT, Duchemin AM, Rose C, Schwartz J-C (1979) In vivo occupation of cerebral histamine H1-receptors evaluated with 3H-mepyramine may predict sedative properties of psychotropic drugs. Eur J Pharmacol 60: 390–392CrossRefGoogle Scholar
  46. Quach TT, Duchemin AM, Rose C, Schwartz J-C (1980) Labeling of histamine H1-receptors in the brain of living mouse. Neurosci Lett 17: 49–54PubMedCrossRefGoogle Scholar
  47. Roques BP, Fournie-Zaluski MC, Soroca E, Lecomte JM, Malfroy B, Llorens C, Schwartz J-C (1980) The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288: 286–288PubMedCrossRefGoogle Scholar
  48. Rose C, Quach TT, Llorens C, Schwartz J-C (1982) Relationship between occupation of cerebral H1-receptors and sedative properties of antihistamines. Arzneimittelforsch 322: 1171–1174Google Scholar
  49. Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltransferase activity in Parkinsonian subjects with reference to dementia. Brain Res 232: 129–139PubMedCrossRefGoogle Scholar
  50. Schwartz J-C (1975) Histamine as a transmitter in brain. Life Sci 17: 503–518PubMedCrossRefGoogle Scholar
  51. Schwartz J-C (1983) Metabolism of enkephalins and the concept of neuropeptidase. Trends Neurosci 6: 15–18CrossRefGoogle Scholar
  52. Schwartz J-C, Barbin G, Baudry M, Garbarg M, Martres MP, Pollard H, Verdiere M (1979) Metabolism and functions of histamine in the brain. In: Essman B, Valzelli L (eds) Current developments in psychopharmacology. Spectrum, New York, pp 173–261Google Scholar
  53. Schwartz J-C, Malfroy B, De la Baume S (1981) Biological inactivation of enkephalins and the role of enkephalin dipeptidyl carboxypeptidase (“enkephalinase”) as neuropeptidase. Life Sci 29: 1715–1740PubMedCrossRefGoogle Scholar
  54. Schwartz J-C, Barbin G, Duchemin AM, Garbarg M, Llorens C, Pollard H, Quach TT, Rose C (1982a) Histamine receptors in the brain and their possible functions. In: Ganellin CR, Parsons ME (eds) Pharmacology of histamine receptors. Wright, Bristol, pp 351–391Google Scholar
  55. Schwartz J-C, De la Baume S, Yi CC, Chaillet P, Marcais-Collado H, Costentin J (1982b) Enkephalin metabolism in brain and its inhibition. Prog Neuropsychopharmacol 6: 665–671CrossRefGoogle Scholar
  56. Sokoloff P, Martres M-P, Schwartz J-C (1980) Three classes of dopamine receptors (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and 3H-domperidone. Naunyn Schmiedebergs Arch Pharmacol 315: 89–102PubMedCrossRefGoogle Scholar
  57. Sokoloff P, Martres M-P, Delandre M, Redouane K, Schwartz J-C (1984) 3H-domperidone binding sites differ in rat striatum and pituitary. Naunyn Schmiedebergs Arch Pharmacol 327:221–227PubMedCrossRefGoogle Scholar
  58. Stefanini E, Clement-Cormier YC (1981) Detection of dopamine receptors in the area postrema. Eur J Pharmacol 74: 257–260CrossRefGoogle Scholar
  59. Steinbusch HWM, Mulder AH (1984) Immunohistochemical localization of histamine in neurons and mast cells in the rat brain. In: Björklund A, Hokfelt T (eds) The handbook of chemical neuroanatomy, vol 3, part II. Elsevier, Amsterdam, pp 126–140Google Scholar
  60. Taquet H, Javoy-Agid F, Cesselin F, Hamon M, Legrand JC, Agid Y (1982) Microtopography of methionine enkephalin, dopamine and noradrenaline in the ventral mesencephalon of human control and Parkinsonian brains. Brain Res 235: 303–314PubMedCrossRefGoogle Scholar
  61. Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol (Lond) 123: 451–481Google Scholar
  62. Wamsley JK, Lewis MS, Young WS, Kuhar MJ (1981) Autoradiographic localisation of muscarinic cholinergic receptors in rat brainstem. J Neurosci 1: 176–191PubMedGoogle Scholar
  63. Wang SC (1965) Emetic and antiemetic drugs. In: Root WS, Hofman FG (eds) Physiological pharmacology. Academic, New York, p 255Google Scholar
  64. Wastek GJ, Yamamura HI (1978) Biochemical characterization of the muscarinic cholinergic re- ceptor in human brain: alterations in Huntington’s disease. Mol Pharmacol 14: 768–780PubMedGoogle Scholar
  65. Watanabe T, Taguchi Y, Shiosaka S, Tanaka J, Kubota H, Terano Y, Tohyama M, Wada H (1984) Distribution of the histaminergic neuron system in the central nervous system of rats; a fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Res 295: 13–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J.-C. Schwartz
    • 1
  • Y. Agid
    • 2
  • M.-L. Bouthenet
    • 3
  • F. Javoy-Agid
    • 2
  • C. Llorens-Cortes
    • 1
  • M.-P. Martres
    • 1
  • H. Pollard
    • 3
  • N. Sales
    • 3
  • H. Taquet
    • 2
  1. 1.Centre Paul Broca de l’INSERMUnité 109 de NeurobiologieParisFrance
  2. 2.Laboratoire de Médecine ExpérimentaleCHU Pitié SalpétrièreParisFrance
  3. 3.Laboratoires de PhysiologieUniversité René DescartesParisFrance

Personalised recommendations