Skip to main content

Zusammenfassung

Die Rachitis, definiert als Systemkrankheit des kindlichen Skeletts, die pathologischanatomisch durch eine ungenügende Kalkeinlagerung in osteoides Gewebe gekennzeichnet ist, wurde bereits vor rund 400 Jahren eingehend beschrieben (Reusner 1582). Die rachitisheilende Wirkung von ultraviolettem Licht wurde 1919 durch Huldschinsky nachgewiesen. 1925 und 1926 entdeckte Windaus das Vitamin D und erhielt dafür 1928 den Nobelpreis für Chemie. Von dieser Zeit an konnte eine medikamentöse Rachitisprophylaxe betrieben werden, zunächst als Stoßprophylaxe, die dann seit Anfang der 70er Jahre zunehmend durch die physiologische kontinuierliche Rachitisprophylaxe ersetzt wurde. Im gleichen Ausmaß, wie die auf einen Vitamin-D-Mangel beruhenden Rachitiden aufgrund dieser Prophylaxe an Bedeutung verloren, traten die Vitamin-D-resistenten Formen in den Vordergrund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adams JS, Wahl TO, Moore WV, Horton WA, Lukert BP (1979) Familial vitamin-D-dependent rickets: Further evidence for end organ resistance to active vitamin D metabolites. Program and Abstracts, 61st Annual Meeting of the Endocrine Society, p 767 (Abstract)

    Google Scholar 

  • Albright F, Butler AM, Bloomberg E (1937) Rickets resistant to vitamin D therapy. Am J Dis Child 54: 529–547

    Google Scholar 

  • Antonarakis SE, Phillips III JA, Mallonee RL et al. (1983) ß-globin locus is linked to the parathyroid ( PTH) locus and lies between the insulin and PTH loci in man. Proc Natl Acad Sci USA 80: 6615–6619

    Google Scholar 

  • Arnaud C, Maijer J, Reade T, Scriver CR, Whelan DT (1970) Vitamin D dependency: An inherited postnatal syndrome with secondary hyperparathyroidism. Pediatrics 46: 871–880

    Google Scholar 

  • Balsan S, Garabedian M, Sorgiard R, Holick MF, Deluca HF (1975) 1,25-dihydroxivitamin D3 and 1α-hydroxyvitamin D3 in children: Biologic and therapeutic effects in nutritional rickets and different types of vitamin D resistance. Pediat Res 9: 586–593

    Google Scholar 

  • Balsan S, Garabedian M, CourtecuisseV et al. (1977) Long-term therapy with 1α-hydroxyvitamin D3 in children with “pseudo-deficiency” rickets. Clin Endocrinol (Oxf) [Suppl] 7: 225s–230s

    Google Scholar 

  • Balsan S, Garabedian M, Lieberherr M, Gueris J, Ulmann A (1979) Serum 1,25-dihydroxyvitamin D concentrations in two different types of pseudo-deficiency rickets. In: Norman AW et al. (eds) Vitamin D basic research and its clinical application. De Gruyter, Berlin, pp 1143–1149

    Google Scholar 

  • Balsan S, Garabedian M, Liberman UA et al. (1983) Rickets and alopecia with resistance to 1,25-dihydroxyvitamin D: Two different clinical courses with two different cellular defects. J Clin Endocrinol Metab 57: 803–811

    Google Scholar 

  • Beer S, Tieder M, Kohelet et al. (1981) Vitamin D resistant rickets with alopecia: A form of end organ resistance to 1,25-dihydroxyvitamin D. Clin Endocrinol (Oxf) 14: 395–402

    Google Scholar 

  • Bell NH, Shaw S, Turner RT (1984) Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest 74: 1540–1544

    Article  PubMed  CAS  Google Scholar 

  • Birtwell WM, Magsamen BF, Fenn PA, Torg JS, Tourtellotte CD, Martin JH (1970) An unusual hereditary osteomalacic disease-pseudo-vitamin D deficiency. J Bone Joint Surg 52-A: 1222–1228

    Google Scholar 

  • Broadus AE (1981) Mineral metabolism. In: Felig P, Baxter JD, Broadus AE, Frohman LA (eds) Endocrinology and metabolism. McGraw-Hill, New York, pp 963–1079

    Google Scholar 

  • Brodehl J (1978) The Fanconi syndrome. In: Edelmann CM Jr (ed) Pediatric kidney disease,vol II. Little Brown, Boston, pp 955–987

    Google Scholar 

  • Brooks MH, Bell NH, Love L et al. (1978) Vitamin-D-dependent rickets type II. Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 298: 996–999

    Article  PubMed  CAS  Google Scholar 

  • Brooks MH, Stern PH, Bell NH (1980) Vitamin D-dependent rickets type II (letter to the editor) N Engl J Med 302: 810

    Google Scholar 

  • Chandler JS, Chandler SK, Pike JW, Haussler MR (1984) 1,25-Dihydroxyvitamin D3 induces 25-hydroxyvitamin D3 -24-hydroxylase in a cultured kidney cell line (LLC-MK2) apparently deficient in the high affinity receptor for the hormone. J Biol Chem 259: 2214–2222

    Google Scholar 

  • Chen TL, Hirst MA, Cone CM, Hochberg Z, Tietze H-U, Feldman D (1984) 1,25-dihydroxy- vitamin D resistance, rickets, and alopecia: Analysis of receptors and bioresponse in cultured fibroblasts from patients and parents. J Clin Endocrinol Metab 59: 383–388

    Google Scholar 

  • Christakos S, Norman AW (1978) Vitamin D3-induced calcium binding protein in bone tissue. Science 202: 70–71

    Article  PubMed  CAS  Google Scholar 

  • Clemens TL, Adams JS, Horiuchi N et al. (1983) Interaction of l,25-dihydroxyvitamin-D3 with keratinocytes and fibroblasts from skin of normal subjetcts and a subject with vitamin-D- dependent rickets, type II: A model for study of the mode of action of 1,25-dihydroxy- vitamin Ds. J Clin Endocrinol Metab 56: 824–830

    Article  PubMed  CAS  Google Scholar 

  • Clements MR, Chalmers TM, Fräser DR (1984) Enterohepatic circulation of vitamin D: A reappraisal of the hypothesis. Lancet 1: 1376–1379

    Google Scholar 

  • Coccia PF (1984) Cells that resorb bone. N Engl J Med 310: 456–458

    Article  PubMed  CAS  Google Scholar 

  • Cohen MS, Gray TK (1984) Phagocytic cells metabolize 25-hydroxyvitamin D3 in vitro. Proc Natl Acad Sci USA 81: 931–934

    Article  PubMed  CAS  Google Scholar 

  • Däumling S, Walka M, Kruse K, Belohradsky BH, Schneider K, Marx SJ, Hadorn HB. In Vorbereitung DeLuca HF, Kleiner-Bossaller A (1973) Metaboliten von Vitamin D als Hormone in der Regulation des Calcium- und Phosphatstoffwechsels. Monatsschr Kinderheilkd 121: 329–337

    Google Scholar 

  • DeLuca HF, Schnoes HK (1983) Vitamin D: Recent advances. Annu Rev Biochem 52: 411–439

    Google Scholar 

  • DeLuca HF, Schnoes HK (1984) Vitamin D: Metabolism and mechanism of action. Annu Rev Med Chem 19: 179–190

    Google Scholar 

  • Delvin EE, Glorieux FH, Marie PJ, Pettifor JM (1981) Vitamin D dependency: Replacement therapy with calcitriol. J Pediatr 99: 26–34

    Google Scholar 

  • Dent CE, Friedman M, Watson L (1968) Hereditary pseudo-vitamin D deficiency rickets (“Hereditäre Pseudomangelrachitis”). J Bone Joint Surg 50-B: 708–719

    Google Scholar 

  • Eil C, Marx SJ (1981) Nuclear uptake of 1,25-dihydroxy (3 H) cholecalciferol in dispersed fibroblasts cultured from normal human skin. Proc Natl Acad Sei USA 78: 2562–2566

    Article  CAS  Google Scholar 

  • Eil C, Liberman UA, Rosen JF, Marx S (1981) A cellular defect in hereditary vitamin-D-de- pendent rickets type II: Defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured fibroblasts. N Engl J Med 304: 1588–1591

    Article  PubMed  CAS  Google Scholar 

  • Esvelt RP, DeLuca HF, Wichmann JK, Yoshizawa S, Zürcher J, Sar M, Stumpf WE (1980) 1,25-dihydroxyvitamin D3 stimulated increase of 7,8-dehydrocholesterol levels in rat skin. Biochemistry 19: 6158–6161

    Google Scholar 

  • Fanconi A, Prader A (1969) Die hereditäre Pseudomangelrachits. Helv Pediatr Acta 24: 423–447

    CAS  Google Scholar 

  • Feldman D, Chen T, Hirst M, Colston K, Karasek K, Cone C (1980) Demonstration of 1,25- dihydroxyvitamin D3 receptors in human skin biopsies. J Clin Endocrinol Metab 51: 1463–1465

    Article  PubMed  CAS  Google Scholar 

  • Feldman D, Chen T, Cone C, Hirst M, Shani S, Benderli A, Hochberg Z (1982) Vitamin-D- resistant rickets with alopecia: Cultured skin fibroblasts exhibit defective cytoplasmic receptors and unresponsiveness to l,25(OH)2Ds. J Clin Endocrinol Metab 55: 1020–1022

    Article  PubMed  CAS  Google Scholar 

  • Fraser DR (1980) Regulation of the metabolism of vitamin D. Physiol Rev 60: 551–613

    PubMed  CAS  Google Scholar 

  • Fräser D, Kooh SW, Scriver CR (1967) Hyperparathyroidism as the cause of hyperaminoaciduria and phosphaturia in human vitamin D deficiency. Pediatr Res 1: 425–435

    Article  PubMed  Google Scholar 

  • Fraser D, Kooh SW, Kind HP, Holick MF, Tanaka Y, DeLuca HF (1973) Pathogenesis of hereditary vitamin-D-dependent rickets. An inborn error of vitamin D metabolism involving defecitve conversion of 25-hydroxyvitamin D to 1α, 25-dihydroxyvitamin D. N Engl J Med 289: 817–822

    Article  PubMed  CAS  Google Scholar 

  • Fraser D, Kooh SW, Scriver CR (1977) Vitamin D resistant rickets - pathophysiology of the various syndromes. In: Norman AW et al. (eds) Vitamin D. Biochemical chemical and clinical aspects related to calcium metabolism. De Gruyter, Berlin, pp 771–780

    Google Scholar 

  • Garabedian M, Vainsel M, Mallett E et al. (1983) Circulating vitamin D metabolite concentrations in children with nutritional rickets. J Pediatr 103: 381–386

    Article  PubMed  CAS  Google Scholar 

  • Glorieux FH, Marie PJ, Pettifor JM, Delvin EE (1980) Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemia vitamin D-resistant rickets. N Eng J Med 303: 1023–1031

    Article  CAS  Google Scholar 

  • Griffin JE, Zerwekh JE (1983) Impaired stimulation of 25-hydroxyvitamin D-24-hydroxylase in fibroblasts from a patient with vitamin D-dependent rickets, type II. A form of receptor-positive resistance to 1,25-dihydroxy vitamin D3. J Clin Invest 72: 1190–1199

    Article  PubMed  CAS  Google Scholar 

  • Hamilton R, Harrison J, Fräser D, Radde I, Morecki R, Paunier L (1970) The small intestine in vitamin dependent rickets. Pediatrics 45: 364–373

    PubMed  CAS  Google Scholar 

  • Harmeyer J, Polnait H (1967) Generalisierte Hyperaminoacidurie mit erblicher Rachitis bei Schweinen. Helv Paediatr Acta 22: 216–229

    PubMed  CAS  Google Scholar 

  • Harmeyer J, Grabe C von, Winkler I (1982) Pseudovitamin D deficiency rickets in pigs. An animal model for the study of familial vitamin D dependency. Exp Biol Med 7: 117–125

    Google Scholar 

  • Haussler MR, Cordy PE (1982) Metabolites and analogues of vitamin D. Which for what? JAMA 247: 841–844

    Article  PubMed  CAS  Google Scholar 

  • Hochberg Z, Benderli A, Levy J, Vardi P, Weisman Y, Chen T, Feldman D (1984) 1,25-dihydroxy-vitamin D resistance, rickets, and alopecia. Am J Med 77: 805–811

    Google Scholar 

  • Holick MF, Adams JS, Clemens TL et al. (1982) Photeoendocrinology of vitamin D: The past, present and future. In: Norman AW et al. (eds) Vitamin D basic research and its clinical application. De Gruyter, Berlin, pp 1151–1156

    Google Scholar 

  • Huldschinsky K (1919) Heilung von Rachitis durch künstliche Höhensonne. Dtsch Med Wochenschr 45: 712–713

    Article  Google Scholar 

  • Insogna KL, Broadus AE, Gertner JM (1983) Impaired phosphorus conservation and 1,25- dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest 71: 1562–1569

    Article  PubMed  CAS  Google Scholar 

  • Jubiz W, Haussier MR, McCain TA, Tohman KG (1977) Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab 44: 617–621

    Article  PubMed  CAS  Google Scholar 

  • Kanis JA (1982) Vitamin D metabolism and its clinical application. J Bone Joint Surg 64-B: 542–560

    Google Scholar 

  • Karpouzas J, Papathanasiou-Klontza D, Xipolita-Zachariadu A, Benetos S, Matsaniotis N (1979) Pseudo-vitamin D deficiency rickets: Report of a case. Helv Paediatr Acta 34: 461–464

    Google Scholar 

  • Keck E, Gollnick B, Reinhardt D, Karch D, Peerenboom H, Krüskemper HL (1983) Calcium metabolism and vitamin D metabolite levels in children receiving anticonvulsant drugs. Eur J Pediatr 139: 52–55

    Article  Google Scholar 

  • Kodicek E (1974) The story of vitamin D. From vitamin to hormone. Lancet I: 325–329

    Google Scholar 

  • Kooh SW, Fräser D, Reilly BJ, Hamilton JR, Gall DG, Bell L (1977) Rickets due to calcium deficiency. N Engl J Med 297: 1264–1266

    Article  PubMed  CAS  Google Scholar 

  • Kruse K (1982a) Durch Rezeptordekte verursachte angeborene Endokrinopathien. Klin Pediatr 194: 359–374

    Article  CAS  Google Scholar 

  • Kruse K (1982b) On the pathogenesis of anticonvulsant-drug-induced alterations of calcium metabolism. Eur J Pediatr 138: 202–205

    Article  PubMed  CAS  Google Scholar 

  • Kruse K (1984) Myopathien bei endokrinen Störungen. Monatsschr Kinderheilkd 132: 581–586

    PubMed  CAS  Google Scholar 

  • Kruse K, Bartels H, Kracht U (1984) Parahyroid function in different stages of vitamin D deficiency rickets. Eur J Pediatr 141: 158–162

    Article  PubMed  CAS  Google Scholar 

  • Kudoh T, Kumagai T, Uetsuji N et al. (1981) Vitamin D dependent rickets: Decreased sensitivity to 1,25-dihydroxyvitamin D. Eur J Pediatr 137: 307–311

    Article  PubMed  CAS  Google Scholar 

  • Lambert PW, Stern PH, Avioli RC et al. (1982) Evidence for extrarenal production of 1α, 25- dihydroxyvitamin D in man. J Clin Invest 69: 722–725

    Article  PubMed  CAS  Google Scholar 

  • Lemann J Jr, Gray RW (1984) Calcitriol, calcium and granulomatous disease. N Engl J Med 311: 1115–1117

    Article  PubMed  Google Scholar 

  • Liberman UA, Samuel R, Halabe A et al. (1980) End-organ resistance to 1,25-dihydroxychole-calciferol. Lancet 1: 504–507

    Article  PubMed  CAS  Google Scholar 

  • Liberman UA, Eil C, Holst P, Rosen JF, Marx SJ (1983a) Hereditary resistance to 1,25-dihydroxyvitamin D: Defective function for receptors for 1,25-dihydroxyvitamin P in cells cultured from bone. J Clin Endocrinol Metab 57: 958–962

    Article  PubMed  CAS  Google Scholar 

  • Liberman UA, Eil C, Marx SJ (1983b) Resistance to 1,25-dihydroxyvitamin D. Association with heterogeneous defects in cultured skin fibroblasts. J Clin Invest 71: 192–200

    Google Scholar 

  • Lobaugh B, Burch WM, Drezner MK (1984) Abnormalities of vitamin D metabolism and action in the vitamin D resistant rachitic and osteomalacic diseases. In: Kumar R (ed) Vitamin D metabolism: Basic and clinical aspects. Nijhoff, The Hague, pp 665–720

    Google Scholar 

  • Lyles KW, Drezner MK (1982) Parathyroid hormone effects on serum 1,25-dihydroxyvitamin D levels in patients with X-linked hypophosphatemic rickets: Evidence for abnormal 25- hydroxyvitamin-D-l-hydroxylase activity. J Clin Endocrinol Metab 54: 638–644

    Article  PubMed  CAS  Google Scholar 

  • Mankin HJ (1974) Rickets, osteomalacia, and renal osteodystrophy. Part I and II. J Bone Joint Surg [Ann] 56:101–128, 352–386

    Google Scholar 

  • Manolagas SC, Deftos LJ (1984) The vitamin D endocrine system and the hematolymphopoietic tissue. Ann Int Med 100: 144–146

    PubMed  CAS  Google Scholar 

  • Marx SJ (1984) Resistance to vitamin D. In: Kumar R (ed) Vitamin D metabolism: Basic and clinical aspects. Nijhoff, The Hague, pp 721–745

    Google Scholar 

  • Marx SJ, Spiegel AM, Brown EM et al. (1978) A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 47: 1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Marx SJ, Liberman UA, Eil C (1983) Calciferol actions and deficiencies in action. Vitam Horm 40: 235–308

    Article  PubMed  CAS  Google Scholar 

  • Marx SJ, Liberman UA, Eil C, Gamblin GT, DeGrange DA, Balsan S (1984) Hereditary resistance to 1,25-dihydroxyvitamin D. Recent Prog Horm Res 40: 589–620

    PubMed  CAS  Google Scholar 

  • Mason RS, Röhl PG, Lissner D, Posen S (1982) Vitamin D metabolism in hypophosphatemic rickets. Am J Dis Child 136: 909–913

    PubMed  CAS  Google Scholar 

  • Matsuda I, Sugai M, Ohsawa T (1969) Laboratory findings in a child with pseudo-vitamin D deficiency rickets. Helv Pediatr Acta 24: 329–336

    CAS  Google Scholar 

  • Matsumoto T, Fontaine O, Rasmussen H (1981) Effect of 1,25-dihydroxyvitamin D3 on phospholipid metabolism in chick duodenal mucosal cell. Relationship to its mechanism of action. J Biol Chem 256: 3354–3360

    Google Scholar 

  • Miyaura C, Abe E, Kuribayshi T, Tanaka H, Konno K, Nishii Y, Suda T (1981) 1,25-dihydroxyvitamin D, induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 102: 937–943

    Google Scholar 

  • Mundy GR (1983) Monocyte-macrophage system and bone resorption. Lab Invest 49: 119–121

    PubMed  CAS  Google Scholar 

  • NGuyen TM, Guillozo H, Garabedian M, Mallet E, Balsan S (1979) Serum concentration of 24,25-dihydroxyvitamin D in normal children and in children with rickets. Pediatr Res 13: 973–976

    Article  PubMed  CAS  Google Scholar 

  • Norman AW, Roth J, Orci L (1982) The vitamin D endocrine system: Steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr Rev 3: 331–366

    Google Scholar 

  • Opshaug O, Maurseth K, Howlid H, Aksnes L, Aarskog D (1982) Vitamin D metabolism in hypophosphatasia. Acta Pediatr Scand 71: 517–521

    Article  CAS  Google Scholar 

  • Parfitt AM Mathews CHE, Brommage R, Jarnagin K, DeLuca HF (1984) Calcitriol but not other metabolite of vitamin D is essential for normal bone growth and development. J din Invest 73: 76–586

    Google Scholar 

  • Pike JW, Dokoh S, Haussler MR, Liberman UA, Marx SJ, Eil C (1984) Vitamin D3-resistant fibroblasts have immunoassayable 1,25-dihydroxyvitamin D3 receptors. Science 224: 879–881

    Article  PubMed  CAS  Google Scholar 

  • Pitt MA (1981) Rachitic and osteomalacic syndromes. Radiol Clin North Am 19: 581–599

    PubMed  CAS  Google Scholar 

  • Prader A, Illig R, Heierli E (1961) Eine besondere Form der primären Vitamin-D-resistenten Rachitis mit Hypocalcämie and autosomal-dominantem Erbgang: die hereditäre Pseudo- Mangelrachitis. Helv Paediatr Acta 16: 452–468

    CAS  Google Scholar 

  • Prader A, Kind HP, DeLuca HF (1976- Pseudovitamin D deficiency (vitamin D dependency). In: Bickel H, Stern J (eds) Inborn errors of calcium and bone metabolism. University Baltimore, Park Press, pp 115–123

    Google Scholar 

  • Price PA, Baukol SA (1980) 1,25-dihydroxyvitamin D3 increases synthesis of the vitamin K- dependent bone protein by osteosarcoma cells. J Biol Chem 255: 11660–11663

    Google Scholar 

  • Rasmussen H, Anast C (1983) Familial hypophosphatemic rickets and vitamin D-dependent rickets. In: Stanbury JB et al. (eds) The metabolic basis of inkerited disease, 5th edn. McGraw-Hill, New York, pp 1743–1773

    Google Scholar 

  • Reade TM, Scriver CR, Glorieux FH et al. (1975) Response to crystalline 1α-hydroxyvitamin D3 in vitamin D dependency. Pediatr Res 9: 593–599

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt TA, Horst RL, Orf JW, Hollis BW (1984) A microassay for 1,25-dihydroxyvitamin D not requiring high performance liquid chromatography: Application to clinical studies. J Clin Endocrinol Metab 58: 91–98

    Google Scholar 

  • Reusner H (1982) Decisiones praecipuorum aliquot de quibus, ad probande Amplissimo Medicorum Basileensium ordine, pro consequenda Asclepiadea Laurea Basileae Rauricorum

    Google Scholar 

  • Rizk M, Pavlovitch JH, Didieqean L, Saurat JH, Balsan S (1984) Skin calcium-binding protein: Effect of vitamin D deficiency and vitamin D treatment. Biochem Biophys Res Commun 123: 230–237

    Google Scholar 

  • Rosen JF, Chesney RW (1983) Circulating calcitriol concentrations in health and disease. J Pediatr 103: 1–17

    Article  PubMed  CAS  Google Scholar 

  • Rosen JF, Finberg L (1972) Vitamin D-dependent rickets: Actions of parathyroid hormone and 25-hydroxycholecalciferol. Pediatr Res 6: 552–562

    Article  PubMed  CAS  Google Scholar 

  • Rosen JF, Fleischman AR, Finberg L, Hamstra A, DeLuca HF (1979) Rickets with alopecia: An inborn error of vitamin D metabolism. J Pediatr 94: 729–735

    Google Scholar 

  • Schaefer K, Herrath D von (1981) Vitamin D 1980 - eine Bestandsaufnahme. Klin Wochenschr 59: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Reads TM, DeLuca HF, Hamstra AJ (1978) Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med 99: 976–979

    Article  Google Scholar 

  • Seino Y, Satomura K, Yamaoka K et al. (1984) Activity of renal 25-hydroxyvitamin D3-1α-hydroxylase in a case of X-linked hypophosphataemic rickets. Eur J Pediatr 142: 219–222

    Article  PubMed  CAS  Google Scholar 

  • Shinki T, Shiina Y, Takahashi N, Tanioka Y, Koizumi H, Suda T (1983) Extremely high circulating levels of 1α,25-dihydroxyvitamin D3 in the marmoset, a new world monkey. Biochem Biophys Res Commun 114: 452–457

    Article  PubMed  CAS  Google Scholar 

  • Sockalosky JJ, Ulstrom RA, DeLuca HF, Brown DM (1980) Vitamin D-resistant rickets: End-organ unresponsiveness to l,25(OH)2D3 J Pediatr 96: 701–703

    CAS  Google Scholar 

  • Soriano JR, Einhorn A, Stark H, Edelmann CM Jr (1966) Deficiency-type rickets due to decreased sensitivity to vitamin D. J Pediatr 68: 227–236

    Article  Google Scholar 

  • Stoop JW, Schraagen MJC, Tiddens HA WM (1967) Pseudo vitamin D deficiency rickets. Report of four cases. Acta Paediatr Scand 56: 607–616

    Google Scholar 

  • Strewler GJ, Bernstein DS, Pletka P (1973) Pseudo-vitamin D deficiency rickets ( PDR) and relative hypoparathyroidism: A report of a family. J Clin Endocrinol Metab 37: 220–229

    Google Scholar 

  • Ströder J (1973) Infektabwehr bei Rachitis. Monatsschr Kinderheilkd 121: 354–359

    PubMed  Google Scholar 

  • Stumpf WE, Sar M, Reid FA, Tanaka Y DeLuca HF (1979) Target cells for 1,25-dihydroxyvitamin Ds in intestinal tract, stomach, kidney, skin, pituitary, and parathyroid. Science 206: 1188–1190

    Google Scholar 

  • Tietze HU, Bürgert A, Schaaff A, Hennes U (1981) Familial rickets with alopecia: Inborn end organ unresponsiveness to l,25(OH) )2D3. Acta Endocrinol [Suppl 240] (Copenh) 96: 35–36

    Google Scholar 

  • Tsoukas CD, Prowedini DM, Manolagas SC (1984) 1,25-dihydroxyvitamin D)3: A novel immuno-regulatory hormone. Science 224: 1438–1440

    Google Scholar 

  • Tsuchiya Y, Matsuo N, Cho H, Kumagai M, Yasaka A, Suda T, Orimo H, Shikari M (1980) An unusual form of vitamin D-dependent rickets in a child: Alopecia and marked end- organ hyposensitivity to biologically active vitamin D. J Clin Endocrinol Metab 51: 685–690

    Google Scholar 

  • Turner RT, Avioli RG, Bell NH (1984) Extrarenal metabolism of 25-hydroxycholecalciferol in the rat: Regulation by 1,25-dihydroxycholecalciferol. Calcif Tissue Int 36: 274–278

    Article  PubMed  CAS  Google Scholar 

  • Uhlig R (1981) Familiäre Pseudovitamin-D-Mangelrachitis mit Alopezie als Folge von hochgradiger Endorganresistenz gegen 1,25-(OH)2-Cholecalciferol. Therapiebarkeit einer weiteren Vitamin-D,-Stoffwechselstörung. Monatsschr Kinderheilkd 129: 420–422

    PubMed  CAS  Google Scholar 

  • Wilke R, Harmeyer J, Grabe C von, Hehrmann R, Hesch RD (1979) Regulatory hyperparathyroidism in a pig breed with vitamin D dependency rickets. Acta Endocrinol (Copenh) 92: 295–308

    CAS  Google Scholar 

  • Windaus A, Holtz K (1927) Die experimentelle Rattenrachitis und ihre Beziehung zum Ergosterin. Nachr Ges Wiss Göttingen Math Phys Kl 2

    Google Scholar 

  • Winkler I, Grabe C v, Harmeyer J (1982) Pseudo vitamin D deficiency rickets in pigs: In vitro measurements of renal 25-hydroxycholecalciferol-l-hydroxylase activity. Zbl Vet Med A 29: 81–88

    CAS  Google Scholar 

  • Zerwekh JE, Glass K, Jowsey J, Pak CYC (1979) An unique form of osteomalacia associated with end organ refractoriness to 1,25-dihydroxyvitamin D and apparent defective synthesis of 25-hydroxyvitamin D. J Clin Endocrinol Metab 49: 171–175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Frick G.-A. von Harnack K. Kochsiek G. A. Martini A. Prader

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kruse, K. (1986). Hereditäre Störungen des Vitamin-D-Stoffwechsels. In: Frick, P., von Harnack, GA., Kochsiek, K., Martini, G.A., Prader, A. (eds) Ergebnisse der Inneren Medizin und Kinderheilkunde / Advances in Internal Medicine and Pediatrics. Ergebnisse der Inneren Medizin und Kinderheilkunde / Advances in Internal Medicine and Pediatrics, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70473-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70473-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70474-1

  • Online ISBN: 978-3-642-70473-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics