Mineralbestand, Gefüge und bodenmechanisches Verhalten tropisch verwitterter Vulkanite

  • K. Knoblich
Conference paper


The investigation of tropically weathered andesites from Costa Rica and of basalts from the Vogelsberg area, subject to tropical-subtropical weathering during the younger tertiary shows changes in mineral composition with different degrees of weathering (tab. 1, 3).

A sequence of Smectite/Allophane ➛ Halloysite/Metahalloysite ➛ Kaolinite Gibbsite was found which might be modified especially during the early phase. The weathering process results in decreasing base Saturation and an increase of sorbed Aluminium-ions and crystalline Al-Oxides (tab. 1, 3). The relative enrichment of iron oxides causes the change to a brick-like colour in the gibbsite stage or even earlier.

The change in mineral composition is accompanied by the development of a different rock texture. The jointed rock bodies can no longer be distinguished in the kaolinite stage of weathering or might only be left as relic structures. Even in the smectite/allophane stage where the texture seems to be intact the strength decreases dramatically.

According to the appearance of rock bodies the outcrops in Costa Rica must be assigned to weathering stages W 2 and W 3, the two outcrops in the Vogelsberg to W 3 — W 5 and W 2 (fig. 6). W 2 and W 3 representing the smectite/allophane and halloysite/metahalloysite stage respectively, W 4 the kaolinite and W 5 the gibbsite stage.

In all weathering stages the rock bodies or ground mass is characterized by an aggregate structure. Even though the material consists mostly of clay minerals it decomposes usually to a sandy-silty system. This behavior is a result of the Al-bonding and the positive Charge of Fe- and Al-Oxides and allophane caused by the low pH-values. The aggregates (fig. 3) as cellular-spongy structures show a high water binding capacity, which results in high liquid and plastic limits and a low plasticity index (fig. 4, 7); The aggregate structure and the stability of the aggregates cause relatively high friction angles. For the Costa Rica samples they are between 30° and 40° (tab. 2). The Vogelsberg samples show lower values but higher cohesion and commonly higher clay mineral content as well (tab. 4).

The material is exposed to extremely high precipitation in Costa Rica. Street embankments usually show very steep slopes which prevents immediate infiltration. Landslides commonly occur where water is seeping into the embankments through flow Channels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baalbaki MA (1980) Zur bodenmechanischen Beurteilung lateritischer Zersatzprodukte von Vogelsbergbasalten. Giess Geol Sehr 24: 152 S, GiessenGoogle Scholar
  2. Bates TF (1962) HailoySite and gibbsite Formation in Hawaii. Clays and Clay Minerals 9: 315–328CrossRefGoogle Scholar
  3. Birrell KS & Fieldes M (1968) Amorphous constituents in “Soil of New Zealand”. N Z Soil Bur Bull 26 (2): 39–49, WellingtonGoogle Scholar
  4. Cabral C (1973) Die tertiären Laterite des westlichen Vogelsberges und ihre Eignung als Steine und Erden - Rohstoffe. Clausthaler Geol Abh 16: 153 S, Clausthal-ZellerfeldGoogle Scholar
  5. Fieldes Ii & Claridge GGC (1975) Allophane, in: Gieseking JE Soils Components 2: 352–389, Springer-Verlag, New YorkGoogle Scholar
  6. Grez R (1977). Nährelementehaushalt und Genese von Böden aus vulkanischen Aschen in Südchile. Freib Bodenkundl Abh 6: 179 S, FreiburgGoogle Scholar
  7. Hartge KH (1969) Die Sackungsneigung als Aspekt der Strukturstabilität. Z Pflanzenern Bodenkd 122: 250–259, WeinheimGoogle Scholar
  8. Iimura K (1965) Cation - exchange capacity and total acidity of allophane and volcanic ash soils. Clay Sei 2, 3: 111–120, TokyoGoogle Scholar
  9. Laguna MJ (1983) Petrologie, Geochemie und Tonmineralogie der Vulkanite der Aguacate-Formation (Miozän-Pliozän), Costa Rica, Zentralamerika. 163 S Diss Univ MarburgGoogle Scholar
  10. Loughnan FC (1969) Chemical weathering of the Silicate Minerals: 116 S Amer Elsevier, New YorkGoogle Scholar
  11. Pichler H & Weyl R (1975) Magmatism and Crustal Evolution in Costa Rica (Central America). Geol Rdsch 64, 2: 457–475, StuttgartGoogle Scholar
  12. Scheffer F & Schachschabel P (1979) Lehrbuch der Bodenkunde, 11. Aufl. 44 2 S, Enke-Verlag, StuttgartGoogle Scholar
  13. Sherman DG (1949) Factors influencing the Development of Lateritic and Laterite Soils in the Hawaiian Islands. Pacific Sei 3: 307–314, HonoluluGoogle Scholar
  14. Terzaghi K (1958) Design and Performance of the Sasumua Dam. Proc Brit Inst Civ Eng 9: 369–394, LondonGoogle Scholar
  15. Townsend FC, Manke PG & Parcher JV (1971) The influence of Sesquioxides on Lateritic Soil Properties. Highway Res Ree 374: 80–92, WashingtonGoogle Scholar
  16. Tuncer ER & Lohnes RA (1977) An Engineering Classification for certain Basalt-derived lateritic soils. Eng Geol 11: 319–339, Elsevier, AmsterdamGoogle Scholar
  17. Wada K & Ataka M (1958) The Ion-uptake phenomena of Allophane. Soil Sei PI Food 4, 1: 12–18, TokyoGoogle Scholar
  18. Wallace KB (1973) Structural behaviour of residual soils of the continually wet Highlands of Papua New Guinea. Geotech 23,2: 203–218, LondonGoogle Scholar
  19. Warkentin BP & Maeda T (1974) Physical Properties of Allophane Soils from the West Indies and Japan. Soil Sei Amer Proc 38: 372–377, MadisonGoogle Scholar
  20. Wesley LD (1977) Shear strength Properties of -Halloysite and Allophane Clays in Java, Indonesia. Geotechnique 27, 2: 125–136, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • K. Knoblich
    • 1
  1. 1.Abt. f. Angewandte GeologieGeologisch-Paläontologisches Institut der Justus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations