Ursachen und Mechanismen des Trocknungs-Befeuchtungs-Zerfalls überkonsolidierter Pelite

  • Irene Merklein-Lempp
Conference paper


Disintegration of overconsolidated pelites is caused by dry-wet and freeze-thaw changes. For this investigation, the influence of material properties of the rock on the one hand and climatic factors on the other hand were investigated both in laboratory tests and site observations.

The observations of the disintegration process are related to material properties such as grain size distribution, mineralogical composition, microstructure, porosity, specific surface and the ability to dry out with and without water supply. The influence of all these properties is examined. The climatic influence on Opalinuston (middle Jurassic) has been investigated in detail and compared with the influence of characteristic indices of the material.

Disintegration is initiated by desiccation and shrinkage, which first lead to compaction and an increase of strength of the overconsolidated pelites. However, contact between the clay particles is weakened by desiccation and the structure collapses when rewetted.

The extent of the initial increase in strength depends on the degree of clay particle orientation. The preferred orientation is independent of the rate of diagenesis.

The decrease in strength by rewetting is decisively influenced by the degree of diagenesis. With increasing diagenesis the ability of water adsorption decreases as does the intensity of the particle disintegration.

The increase of material strength resulting from shrinkage is opposed by a decrease in strength of the rock caused by fissuring. Rewetting with water or water vapour causes an additional disintegration of the already weakened material.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attewell PB, Farmer IW (1976) Principles of Engineering Geology. 1045 S Chapman u Hall, LondonGoogle Scholar
  2. Bjerrum L (1967) Mechanism of progressive failure in slopes of overconsolidated plastic clays and clay shales. The 3th Terzaghi Lecture, 66 S, Norges Geotek Inst, OsloGoogle Scholar
  3. Einsele G (1958) Der Opalinuston als Baugrund und Baustoff im Rohrleitungsbau. Das Gas- und Wasserfach 8: 1–8, MünchenGoogle Scholar
  4. Einsele G (1961) Durch Grabarbeiten ausgelöste Hangrutschungen im Verwitterungslehm des Braunj,ura gamma, geologisch und bodenmechanisch beobachtet. Jb Geol Landesamt Bad - Württ 4: 145–181, Freiburg i BrGoogle Scholar
  5. Einsele G (1983) Mechanismus und Tiefgang der Verwitterung bei mesozoischen Ton- und Mergelsteinen. Z dt geol Ges 134: 289–315, HannoverGoogle Scholar
  6. Einsele G, Wallrauch E (1964) Verwitterungsgrade bei mesozoischen Schiefertonen und Tonsteinen und ihr Einfluß bei Standsicherheitsproblemen. Vorträge der Baugrundtagung Berlin: 59–89, DGEG, EssenGoogle Scholar
  7. Hudec PP (1978) Developments of durability tests for shales in embankments and swamp backfills. Ministry of Transportation and Communications Research and Development Division, Ontario, KanadaGoogle Scholar
  8. Johnson SJ (1969) Engineering properties and behaviour of clay shales. Proc 7th Int Conf of Soil Mech and Found Eng Special Session 10: 483–488, Mexico CityGoogle Scholar
  9. Keil K (1954) Ingenieurgeologie und Geotechnik, 2. Aufl, 1132 S, Halle/SGoogle Scholar
  10. Lempp Ch (1979) Entfestigung überkonsolidierter pelitischer Gesteine und ihr Einfluß auf die Tragfähigkeit des Straßenuntergrundes, 234 S Diss Univ TübingenGoogle Scholar
  11. Merklein I (1982) Limitierende Faktoren des Trocknungs-Befeuchtungs-Zerfalls überkonsolidierter Tonsteine, 96 S, Diss Univ TübingenGoogle Scholar
  12. Overbeck R (1981) Verwitterung von Mergelkalken durch Trocknungs-Befeuchtungs- Wechsel. Ber 3 Nat Tag f Ingenieurgeologie, Ansbach/MfrGoogle Scholar
  13. Schmid HP (1982) Geländebeobachtungen zur Verwitterung des Opalinustons und Kartierung im Raum Rosenfeld (Lkr. Balingen). Unveröff Dipl Arb, Univ TübingenGoogle Scholar
  14. Underwood L (1967) Classification and identification of shales. Proc ASCE Soil Mech and Found Div 93Google Scholar
  15. Wallrauch E (1969) Verwitterung und Entspannung bei überkonsolidierten tonig-schluffigen Gesteinen Südwestdeutschlands, 184 S, Diss Univ TübingenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Irene Merklein-Lempp
    • 1
  1. 1.Ed. Züblin AGStuttgart 80Germany

Personalised recommendations