Advertisement

Geotechnik der Moränen

  • Friedrich Grube
Conference paper

Summary

The geotechnical properties of moraines are generally considered to be more or less uniform. Frequent observations at building sites, however, have proved the contrary.

The petrographic composition of glacial sediments is extremely variable. All rock- and earth-material eroded and transported by ice is indicated as moraines. Distinction is made between moraines of distant and local origin. Moraines of distant origin in Northern Germany consist of rock and soil from Scandinavia and the Baltic. In basal tills such material evolved by lodgement or melt-out. Sole tills contain the total sheared and compressed local rock material. The composition changes after short distances.

On the other hand, the petrographic composition of ground moraines is only subordinately influenced by local material and therefore much more uniform over great distances. Till of the Drenthe-Glacial from Juetland and Schleswig-Kolstein can easily be mistaken for a ground moraine of Lower Saxony and the Netherlands of the same period.

The youngest, sandy tili of the Warthe-Glacial compares with the Drenthe- moraines, but is found only at the lower Elbe, in NE-Lower Saxony and in Schleswig-Holstein. The tili of the Niendorf-Formation (Middle Saale Glacial) is rieh in clay, lime and flint. The darkgrey Elstermoraine is characterized by low lime-content and high stiffness. It is found in deep excavations only.

A main target of all mappings for foundation engineering purposes is to distinguish the different morphologic (drumlins etc.), genetic and stratigraphic types of moraines as to their influences on project and design. Thickness, facies and other relevant geotechnical parameters can be presented according to the selected scale. The usual soil mechanical parameters require refinements and additions in order to describe the ränge of properties of the ground moraines.

Critical experiences have been made very often in foundation engineering with the uncalculable occurrance of foundlings and erratic blocks of different rock types. The dark tili of the Elster Glacial is often highly Consolidated and causes problems during excavation or anchoring measures. The Niendorf tili is stable in slopes but difficult to excavate. The tili of the Drenthe-, Fuhlsbuettel- (Warthe-) and Weichsel Periods have proved to be critical due to their varying stiffness. Shear failures in the Drenthe tili have caused considerable damage, and the Fuhlsbuettel tili as well as the Pudasjärvi tili in Finland are known for their pseudothixotropic behaviour (pudding moraine).

The reasons for these variable geotechnical properties are manifold. First of all, the petrographic and geochemical parameters are of great importance. Furthermore, the degree of weathering, the diagenetic and the glacial consolidation have to be mentioned. Experience has shown that also the stratigraphic position of the tills is of considerable importance for the engineering geological assessment. Concluding studies are in progress.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aario R (1977) Flutings, Drumlins and Rogen-Landforms. 2: 5–14Google Scholar
  2. Baermann A & Wüstenhagen K (1985) Ingenieurgeologische Untersuchungen an Geschiebemergeln im Hamburger Raum. DFG-Abschlußbericht, 17 S 8 AbbGoogle Scholar
  3. Brandes H (1977) HC Höfle, H Jordan, J Lepper, H Mengeling, J Merkt, K-D Meyer, G Reuter, J Tüxen, R Vinken, H-H Voss, F Grube & W Lange Geologische Übersichtskarte 1: 200 000, CC 3126 Hamburg-Ost. BA Geowiss u Rohstoffe in Zusammenarbeit Geol Landesämter der ℌBRD, HannoverGoogle Scholar
  4. Christensen S (1985) Sedimenpetrographie und Geochemie der Moränen. DFG-Abschlußbericht 335/68-4, Inst Geophys Univ KielGoogle Scholar
  5. Ehlers J (1978) Die quartäre Morphogenese der Harburger Berge und ihrer Umgebung. Mitt Geograph Ges Hamburg 68: 181 S, 47 Abb, 1 Kt, HamburgGoogle Scholar
  6. Einsele G (1983) Mechanismus und Tiefgang der Verwitterung bei mesozoischen Ton- und Mergelsteinen. Z dt geol Ges 134: 289–315, HannoverGoogle Scholar
  7. Einsele G (1983) Zur Definition von Verwitterungsgraden. DFG-Protokoll 5. Kolloquium 21.–23. Februar: 56–57, MainzGoogle Scholar
  8. Felix-Henningsen P (1979) Merkmale, Genese und Stratigraphie fossiler und reliktischer Bodenbildungen in saalezeitlichen Geschiebelehmen Schleswig-Holsteins und Süd-Dänemarks. Diss Univ Kiel, 218 SGoogle Scholar
  9. Grube F (1970) Baugeologie der Lockergesteine im weiteren Hamburger Raum. Grundbau Taschenbuch Bd 1: 109–160, W Ernst & Sohn/ BerlinGoogle Scholar
  10. Grube F (1972) Tunnel-Baugeologie im Lockergestein. 1. Teil: Geologische Erkundung. Straße Brücke Tunnel 24 (9): 225–234, BerlinGoogle Scholar
  11. Grube F (1981) Postsedimentäre Veränderungen von Gletscherablagerungen. Verh naturwiss Ver Hamburg (NF) 24 (2): 103–112, HamburgGoogle Scholar
  12. Höfle HC & Schlenker B (1979) Das Pleistozänprofil der Kreidegrube Hemmoor bei Stade (Elbe-Weser-Dreieck). Geol Jb, A 49: 3–25, HannoverGoogle Scholar
  13. Kujansuu R (1981) General Geological Map of Finland. Quaternary Deposits 1: 400 000. No 36 Rovaniemi, Geologinen TutkimuslaitosGoogle Scholar
  14. Lindroos P (1977) Geological Map of Finland. Quarternary Deposits 1: 100 000, No 1143 Pori, Geologinen TutkimuslaitosGoogle Scholar
  15. Meißner R, Kähler S & Stümpel H (1985) Lithologische Erkundung oberflächennaher Sedimente unter Anwendung von Kompressions- und Scherwellen. Inst Geophys Uhiv Kiel, DFG-Projekt 335/68–4Google Scholar
  16. Menke B (1982) Mittel- und Jungpleistozän in Westholstein am Beispiel des Blattes 1922 Schenefeld. Die Heimat 89: 419–429, NeumünsterGoogle Scholar
  17. Paluska A (1983) Erfassung und Simulation von Deformationsvorgängen im Geschiebemergel. DFG-Protokoll 5. Kolloquium 21.-23.Februar: 99– 101, MainzGoogle Scholar
  18. Richmond GM (1977) Quaternary Stratotypes of North America. Volume 1. INQUA: 114 p (US Geological Survey)Google Scholar
  19. Ross P-H (1984) Ingenieurgeologische Planungskarte 1: 5 000 Gettorf. Erl 57, 4 Kt, Geologisches Landesamt Schleswig-Holstein, KielGoogle Scholar
  20. Schreiner A & Haag Th (1982) Zur Gliederung der Rißeiszeit im östlichen Rheingletschergebiet (Baden-Württemberg). Eiszeitalter und Gegenwart, 32: 137–161 HannoverGoogle Scholar
  21. Sjørring S (1981) Pre-Weichselian Till Stratigraphy in Western Jutland Denmark. Mededel Rijks geol Dienst 34: 62–68, HaarlemGoogle Scholar
  22. Steinfeld K (1969) Zur Gründung von 60-geschossigen Hochhäusern in Ham bürg. Baugrundtagung DGEG 35–103, EssenGoogle Scholar
  23. Stremme HE (1981) Unterscheidung von Moränen durch Bodenbildungen. Mededel Rijks geol Dienst 34: 51–56, HaarlemGoogle Scholar
  24. Terzaghi K & Peck RB (1961) Die Bodenmechanik in der Baupraxis. 585 S Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Friedrich Grube
    • 1
  1. 1.Geologisches Landesamt Schleswig-HolsteinKielGermany

Personalised recommendations