Stabilität und Verwitterungsverhalten natürlicher und künstlicher Böschungen in Kalk-Mergelwechselfolgen

  • Dietrich Rupp
Conference paper


The aim of this project was to quantify the influence of lithology and dip on the inclination of natural and artificial slopes in limestonemarlstone sequences. In order to compare the results, the distinction must be made between slopes with and those without active basal erosion by a watercourse. Such erosion will lead to a limit equilibrium profile of the slope. Where basal erosion is not present, the inclination of the slope will be controlled by different weathering mechanisms (slaking in marlstones, leaching in limestones). Thus the resulting inclination reaches a critical gradient, which is controlled by weathering mechanisms.

The lithology of the slope was classified by means of a limestone to marlstone ratio. This was done by dividing the slope into sections of overall uniform lithology. For each section the average thicknesses of the limestone and marlstone beds were determined. The quotient of these two parameters is the limestone-marlstone ratio.

In order to have a better understanding of the influence of lithology on the inclination, only slopes lying within a quasi-homogeneous area (that is, identical dip and joint sets) were compared. In doing so, only slopes with beds dipping against the inclination of the slopes were used. Within the different quasi-homogeneous areas an exponential relationship exists between the slope gradient and the limestone-marlstone ratio(figs. 2 & 3). For equilibrium profiles not limited by basal erosion, the inclinations have been estimated mathematically by a simple model (secondary toppling) and compared to field measurements (fig. 7).

Furthermore the rate of retreat of vertical walls due to weathering has been determined in abandoned quarries in limestone-marlstone sequences (fig. 9). The amount of talus accumulated at the bases of step slopes during a certain time interval can be calculated from these rates of retreat.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attewell PB & Farmer IW (1976) Principles of Engineering Geology. Chapmar and Hall, London, 104 5 pGoogle Scholar
  2. Burnette AD, Mimm D, Epps RJ (1979) The engineering geological description of carbonate suite rocks and soils. Ground Engineering 12, no 2:41–48, Foundation Publ Bentwood, EnglandGoogle Scholar
  3. Chandler RJ & Skempton AW (1974) The design of permanent cutting slopes in stiff fissured clays. Geotechnique 24, No 4: 457–466, LondonCrossRefGoogle Scholar
  4. Dearman WR (1974) Weathering Classification in the characterisation of rock for engineering purposes in British practice IAEG Bull No 9, ParisGoogle Scholar
  5. Dearman WR (1981) Engineering properties of carbonate rocks. IAEG Bull No 24: 3–17, ParisGoogle Scholar
  6. Einsele G (1983) Mechanismus und Tiefgang der Verwitterung bei mesozoischen Ton- und Mergelsteinen. Z dt geol Ges 134: 289–315, HannoverGoogle Scholar
  7. Evans RS (1981) An analysis of secondary toppling rock failures–stress redistribution method. Q J eng Geol Vol 14: 77–86, LondonCrossRefGoogle Scholar
  8. Gierer H (1981) Standsicherheit von Einschnittsböschungen in wenig verwitterten überkonsolidierten Peliten Südwestdeutschlands. Diss Geowiss Fak Univ Tübingen, 118 S, 41 Abb, 1 Tab, 7 Taf, TübingenGoogle Scholar
  9. Lozinska-Stepien H (1982) Engineering-geological features of a massif. of carbonate rocks for construction of water reservoirs. IAEG Bull 25: 127–131, ParisGoogle Scholar
  10. Merklein I (1982) Limitierende Faktoren des Trocknungs-Befeuchtungs-Zerfalls überkonsolidierter Tonsteine. Diss Geowiss Fak Univ Tübingen, 96 S, 55 Abb, 8 Tab 1 Taf, TübingenGoogle Scholar
  11. Müller B (1980) Die Häufigkeit von Trennflächen in Festgesteinen. Ztsch geol Wiss 8: 265–282, BerlinGoogle Scholar
  12. Müller L (1963) Der Felsbau, Bd. 1. 624 S, 307 Abb, 22 Taf, Enke, StuttgartGoogle Scholar
  13. Overbeck R (1981) Verwitterung von Mergelkalken durch Trocknungs-Befeuch tungszerfall. Ber 3 Nat Tag Ingenieurgeol 225–232, AnsbachGoogle Scholar
  14. Peters K (1980) Klüfte - Merkmale, Entstehungsdeutungen, ihre Verwendbarkeit für die Rekonstruktion von Spannungen sowie ihre Bedeutung für die Erdöl - Erdgas Industrie. Ztsch geol Wiss 7: 853–877, BerlinGoogle Scholar
  15. Rapp A (1961) Studies of the postglacial development of mountain slopes. Medd Uppsala Univ Geogr Inst Ser 159: 1–11, UppsalaGoogle Scholar
  16. Wild H (1955) Das Alter der ehemaligen Neckarschlinge bei Kirchheim und Lauffen a.N. im nördlichen Württemberg und ihre hydrologischen Verhält nisse. Jh geol Landesamt Baden-Württemberg 1: 367–376, Freiburg i.Br.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Dietrich Rupp
    • 1
  1. 1.Geologisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations