Skip to main content

Mechanische Eigenschaften von Störungen und Verwitterungszonen im Granitgebirge und deren genetische Charakterisierung

  • Conference paper
Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Festgesteinen

Summary

The Hercynian granites of the Schwarzwald area in southwestern Germany display distinct variations in the amount of disintegration and weathering. Different stages of transition ranging from unweathered rock to cohesionless material can be observed in the same level of erosion. The process of disintegration and weathering is accompanied by a continuous decrease in strength. Several material properties, such as dry-density or porosity (fig. 2, 3), creep behaviour (fig. 4, 5) and elasticity (fig. 5, 6) change in a characteristic manner correlating to the decrease in strength. Non-elastic properties of the granite become dominant during disintegration. The granites of the Schwarzwald area can be classified into six stages of weathering, where each stage is characterized by certain mechanical properties (fig. 7).

This Classification in terms of mechanical properties combines the following parameters: 1. uniaxial peak strength, ßD, 2. dry-density, ρd, 3. strain rate ratio, εlateralaxial, 4. creep strain rate per 2 minutes under one half of the uniaxial peak stress, 5. percentage of peak strain rate, % εBR which depends on uniaxial stress in a nonlinear manner, 6. modulus ratio, Ereloading/E1st loading.

Tentatively the problem of determination of rock mass strength is investigated by the aid of laboratory tests. The results of direct shear tests on natural joints of the granites (fig. 8) were used to estimate a lower limit of the strength of the granitic rock mass. Discontinuities as well in the mineral structure as in the rock mass structure cause a similar effect on the p-wave-velocity (fig. 9). In connection with this result it appears plausible that a disintegrated specimen may react like a jointed rock mass. Accordingly the result of multi-step triaxial tests on rock specimens (fig. 10, 11, 12) were used to define an upper limit of rock mass strength of the Schwarzwald granites. The strength of the gran itic rock mass is also classified depending on the mechanical properties of the rock and its discontinuities (fig. 13).

The decrease in strength and the change in mechanical properties are Chiefly caused by increasing microcrack density, disintegration of miner al structure and increasing porosity. Mineralogical and chemical changes especially formation of phyllosilicates, promote disintegration but in all types of granite in the Schwarzwald area occur conditions of only slight chemical weathering intensity.

Disintegration and decrease in strength are mainly the results of mechanical, tectonic and thermal stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Brauns J, Hötzl H, Kast K, Lempp Ch, Metzler F, Smykatz-Kloss W (1984) Verwitterung und Auflockerung, Einführung und Versuch einer Klassifikation. (In diesem Band)

    Google Scholar 

  • Dearman WR, Irfan TY (1978) Classification and index properties of weath ered coarse-grained granites from South-West-England. 3 Int Congr IAEG Vol 2 See II: 119–130, Madrid

    Google Scholar 

  • Dearman WR; Baynes FJ, Irfan TY (1978) Engineering grading of weathered granite. Eng Geol 12 No 4: 345–374, Amsterdam

    Article  Google Scholar 

  • DGEG-Arbeitskreis Versuchstechnik im Fels (1979) Empfehlungen für die Versuchstechnik im Fels. Die Bautechnik Nr 56 H 7: 217–228, Berlin

    Google Scholar 

  • Dula WF (1981) Correlation between deformation lame11ae, microfractures macorfractures and in situ stress measurements. White River Uplift, Colorado. Geol Soc Am Bull 92: 37–46, Boulder, Colorado

    Article  Google Scholar 

  • Emmermann R (1977) A petrogenetic model for the origin and evolution of the Hercynian granite series of the Schwarzwald. N Jb Min Abh 128 Nr 3 219–253, Stuttgart

    Google Scholar 

  • Haas A, Lempp Ch (1983) Entfestigung von Graniten des Südschwarzwaldes durch Verwitterung. Die Geotechnik 1: 11–18, Essen

    Google Scholar 

  • Irfan TY, Dearman WR (1978) Engineering Classification and index properties of a weathered granite. Bull IAEG 17: 79–90, Krefeld

    Google Scholar 

  • ISRM-Commission (1972) Standardization of laboratory and field tests. Suggested methods of determining the maximal compressive strength of rock materials and the point load strength index. ISRM Empfehlungen, Oslo

    Google Scholar 

  • John KW (1969) Festigkeit und Verformbarkeit von druckfesten, regelmäßig geklüfteten Diskontinuen. Veröff d Inst f Bodenmechanik und Felsmechanik der Universität Karlsruhe 37, Karlsruhe

    Google Scholar 

  • Lempp Ch (1981) Mechanische und mineralogisch-geochemische Eigenschaften von Granit in verschiedenen Verwitterungszuständen. Ber 3 Nat Tag Ing Geol: 191–200, Ansbach

    Google Scholar 

  • Matthess G (1964) Zur Vergrusung der magmatischen Tiefengesteine des Odenwaldes. Notizbl Hess LA f Bodenforschung 92: 160–178, Wiesbaden

    Google Scholar 

  • Natau O, Leichnitz W, Balthasar K (1978) Construction of a Computer controlled direct shear testing machine for investigations on rock discontinuities. Proc 4th Int Congr of ISRM Vol 3: 241–243, Montreux

    Google Scholar 

  • Natau O, Fröhlich B0, Mutschier Th (1983) Recent developments of the larges-scale triaxial test. Proc 5th Int Congr of ISRM Vol A: 65–74, Melbourne

    Google Scholar 

  • Simmons G, Richter D (1976) Microcracks in rocks. In: Strens RGJ ( 1976 ) The physics and chemistry of minerals and rocks. Wiley and Sons, London, p 105–137

    Google Scholar 

  • Smykatz-Kloss W, Goebelbecker J (1985) Der chemische Verwitterungsgrad von Gesteinen als Maß für ihre ingenieurgeologische Verwendbarkeit. (In diesem Band)

    Google Scholar 

  • Wang HF, Simmons G (1978) Microcracks in crystalline rock from 5,3 km depth in the Michigan Basin. J Geophys Res Vol 83 No B12: 5849–5856, Washington DC

    Article  Google Scholar 

  • Weber K (1982) Conjugate cleavage and microfractures in sandstones and quarzites. In: Int Conf on Planar and Linear Fabrics of Deformed Rocks. Mitt aus d Geol Inst d ETH Zürich Neue Folge 239a, Zürich

    Google Scholar 

  • Wilhelmy H (1981) Klimamorphologie der Massengesteine. 2. Aufl.: 239 S, Wiesbaden

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lempp, C., Natau, O. (1985). Mechanische Eigenschaften von Störungen und Verwitterungszonen im Granitgebirge und deren genetische Charakterisierung. In: Heitfeld, KH. (eds) Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Festgesteinen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70452-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70452-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15366-5

  • Online ISBN: 978-3-642-70452-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics