Skip to main content

Auflockerung und Verwitterung in der Ingenieurgeologie: Übersicht, Feldansprache, Klassifikation (Verwitterungsprofile) — Einleitender Beitrag

  • Conference paper
Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Festgesteinen

Summary

This introductory chapter deals with the significance and field Classification of weathering profiles in different important rock types. For a first description of rocks and soils in engineering geology, the distinction of 5 stages of weathering (apart from fresh parent rock) are recommended. The term “degree” of weathering should be used for more quantitative to semi-quantitative characterisations.

Near a land surface lowered by denudation, all rock types are affected by stress release (fig. 1). As a result, the rock mass starts to disintegrate along pre-existing and newly developed fissures, joints, and other discontinuities. In this stage, the material of sedimentary rocks, particularly that of mudrocks, is still overconsolidated and more or less diagenetically indurated. These properties are successively lost during weathering. For rock types containing clay minerals, the “inactivation” and “reactivation” of these minerals play a great part in these processes. Therefore, kind and amount of clay minerals are used to distinguish between different rock types (fig. 2) which, for example, behave differently when they are kept under water or are exposed to repeated drying and Wetting.

The weathering profiles can be subdivided into 2 groups (fig. 3). In the first one, the rock material is relatively resistent to weathering and remains hard nearly up to the land surface. In the second group, the rock is disintegrated and decomposed already at greater depth. Both groups can form either non-cohesive or cohesive matrix respectively soils in stages W4 and W5. Furthermore, one should distinguish between regulär, surface-oriented weathering profiles and irregular ones which may be caused by oxidation and dissolution of circulating groundwater and/or by special tectonic fracture zones and faults (fig. 4). Examples of surface-oriented weathering profiles including some explanations are shown for the following rock types: Granite and basalt (fig. 5), sandstones and bedded limestones (fig. 6), mudstones and tili (fig. 7).

Finally, some consequences of the weathering profile for shallow foundations, permeability, angle and stability of slope cuts, “back-weathering”, development of failure planes, ground-heave, and dam construction are briefly discussed (fig. 8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bell FG (1981) Engineering properties of soils and rocks. 149 p, Butterworth, London

    Google Scholar 

  • Bjerrum E (1967) Progressive failure in slopes of overconsolidated plastic clay and clay shales. Proc Amer Soc Civ Engineer 92, SM5: 2–49

    Google Scholar 

  • Brunsden D (1979) Weathering. IN: Embleton C & Thornes J (eds) Process in Geomorphology. Arnold, London: 7 2–129

    Google Scholar 

  • Burnett AD, Mimm D, Epps RJ (1979) The engineering geological description of carbonate suite rocks and soils. Ground Engineering 12 no 2: 41–48, Foundation Publ, Bentwood, England

    Google Scholar 

  • Clayton CRI, Simons NE, Matthews MC (1982) Site investigation. 424 p Halsted Press, New York

    Google Scholar 

  • Dearman WR (1976) Weathering Classification in the characterization of rock: a revision. Bull Internat Assoc Engineer Geol 13: 123–127

    Article  Google Scholar 

  • Einsele G (1983) Mechanismus und Tiefgang der Verwitterung bei mesozoischen Ton- und Mergelsteinen. Z dt geol Ges 134: 289–315, Hannover

    Google Scholar 

  • Gamon TI (1983) A comparison of existing schemes for the engineering description and Classification of weathered rocks in Hong Kong. Bull Internat Ass Engineering Geology 28: 225–23 2, Paris

    Article  Google Scholar 

  • Gerrard AJ (1981) Söils and landforms. 219 p, Allen & Unwin, London

    Google Scholar 

  • Gierer H (1981) Standsicherheit von Einschnittsböschungen in wenig verwitterten überkonsolidierten Peliten Südwestdeutschlands. Diss Geowiss Fak Univ Tübingen: 118 S, 41 Abb, 1 Tab, 21 Fotos

    Google Scholar 

  • Gründer J (1978) Struktureller Aufbau und geomechanische Eigenschaften eines stark überkonsolidierten Tones — am Beispiel des Feuerletten. Veröff Grundbauinst Landesgewerbeanstalt Bayern H 31: 100 S, 80 Abb, Nürnberg

    Google Scholar 

  • Heitfeld KH (1965) Hydro- und baugeologische Untersuchungen über die Durchlässigkeit des Untergrundes an Talsperren des Sauerlandes. Geol Mitt 5: 210 S, Aachen

    Google Scholar 

  • Hesse KH (1978) Zur ingenieurgeologischen Gebirgscharakteristik und deren Einfluß auf Entwurf und Sicherung von Felsbauwerken im Rheinischen Schiefergebirge. Mitt Ing u Hydrogeol 6: 172 S, Aachen

    Google Scholar 

  • International Society for Rock Mechanics, Commission on Classification of rocks and rock masses (1981) Basic geotechnical description of rock masses. Internat J Rock Mech Min Sei & Geomech Abstr 18: 85–110

    Google Scholar 

  • Keck O (1976) Ingenieurgeologische Untersuchungen an Verwitterungsgesteinen des Oberdevons im Raum Aachen. Mitt Ing u Hydrogeol 2: 171 S, Aachen

    Google Scholar 

  • Kühn G (1973) Zur Frage der oberflächennahen Auflockerung Im Geschiebemergel Nordwestdeutschlands. Diss Math-Naturwiss Fak Univ Kiel: 120 S, 19 Photo–Abb

    Google Scholar 

  • Lempp Ch (1979) Die Entfestigung überkonsolidierter, pelitischer Gesteine Süddeutschlands und ihr Einfluß auf die Tragfähigkeit des Straßenuntergrundes. Diss Univ Tübingen: 234 S, 91 Abb, 18 Tab, 12 Fototafeln

    Google Scholar 

  • Lempp Ch (1981) Weatherability of overconsolidated pelitic rocks of the Keuper und Jurassic in Southwestern Germany. Bull Internat Ass Engineer Geol 23: 101–108, Krefeld

    Google Scholar 

  • Levine ER, Ciolkosz EJ (1983) Soil development in tili of various ages in northwestern Pennsylvania. Quarternary Res 19: 85–99

    Article  Google Scholar 

  • Lozinska-Stepien H, Pozniak R (1982) Engineering-geological features of a massif of carbonate rocks for construction of water reservoirs. Bull Internat Ass Engineer Geol 25: 127–131, Paris

    Google Scholar 

  • Lukashev KI (1970) Lithology and geochemistry of the weathering crust. Israel Progr for Scientific Translations, Keter Press, Jerusalem, 368 p

    Google Scholar 

  • Matula M, IAEG Commission on Engineering Geological Mapping (1981) Rock and soil description and Classification for engineering geological mapping. Bull Internat Ass Engineer Geology 24: 23 5–274, Aachen/Essen

    Google Scholar 

  • Merklein I (1982) Limitierende Faktoren des Trocknungs-Befeuchtungs- Zerfalls überkonsolidierter Tonsteine. Diss Geowiss Fak Univ Tübingen: 96 S, 55 Abb, 8 Tab, 11 Fototaf

    Google Scholar 

  • Müller L (1970) Geomechanische Auswirkungen von Abtragungsvorgängen. Geol Rundschau 59: 16 3–178, Stuttgart

    Google Scholar 

  • Ollier CD (1975) Weathering. 2nd Ed, 304 p, Longman, London

    Google Scholar 

  • Overbeck R (1981) Verwitterung von Mergelkalken durch Trocknungs-Befeuchtungs- Zerfall. Ber 3 Nat Tag Ingenieurgeol: 225–232, Ansbach

    Google Scholar 

  • Prinz H (1982) Abriß der Ingenieurgeologie. Enke, Stuttgart, 419 S

    Google Scholar 

  • Selby MJ (1980) A rock mass strength Classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z Geomorph NF 24, 1: 31–51, Berlin, Stuttgart

    Google Scholar 

  • Selby MJ (1982) Hillslope materials and processes. Univ Press, Oxford, 264 p

    Google Scholar 

  • Small RJ, Clark MJ (1982) Slopes and weathering. Cambridge Univ Press: 112 P

    Google Scholar 

  • Tietze R (1981) Ingenieurgeologische, mineralogische und geochemische Untersuchungen zum Problem der Baugrundhebungen im Lias epsilon (Posidonienschiefer) Baden-Württembergs. Jh Geol Landesamt Baden- Württemberg 22: 109–185, Freibrug i Br

    Google Scholar 

  • Wallrauch E (1969) Verwitterung und Entspannung bei überkonsolidierten tonig-schluffigen Gesteinen Südwestdeutschlands. Diss Univ Tübingen: 184 S, 46 Abb, 7 Taf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Einsele, G., Heitfeld, KH., Lempp, C., Schetelig, K. (1985). Auflockerung und Verwitterung in der Ingenieurgeologie: Übersicht, Feldansprache, Klassifikation (Verwitterungsprofile) — Einleitender Beitrag. In: Heitfeld, KH. (eds) Ingenieurgeologische Probleme im Grenzbereich zwischen Locker- und Festgesteinen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70452-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70452-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15366-5

  • Online ISBN: 978-3-642-70452-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics