Advertisement

Auflockerung und Verwitterung in der Ingenieurgeologie: Übersicht, Feldansprache, Klassifikation (Verwitterungsprofile) — Einleitender Beitrag

  • G. Einsele
  • K.-H. Heitfeld
  • Ch. Lempp
  • K. Schetelig

Summary

This introductory chapter deals with the significance and field Classification of weathering profiles in different important rock types. For a first description of rocks and soils in engineering geology, the distinction of 5 stages of weathering (apart from fresh parent rock) are recommended. The term “degree” of weathering should be used for more quantitative to semi-quantitative characterisations.

Near a land surface lowered by denudation, all rock types are affected by stress release (fig. 1). As a result, the rock mass starts to disintegrate along pre-existing and newly developed fissures, joints, and other discontinuities. In this stage, the material of sedimentary rocks, particularly that of mudrocks, is still overconsolidated and more or less diagenetically indurated. These properties are successively lost during weathering. For rock types containing clay minerals, the “inactivation” and “reactivation” of these minerals play a great part in these processes. Therefore, kind and amount of clay minerals are used to distinguish between different rock types (fig. 2) which, for example, behave differently when they are kept under water or are exposed to repeated drying and Wetting.

The weathering profiles can be subdivided into 2 groups (fig. 3). In the first one, the rock material is relatively resistent to weathering and remains hard nearly up to the land surface. In the second group, the rock is disintegrated and decomposed already at greater depth. Both groups can form either non-cohesive or cohesive matrix respectively soils in stages W4 and W5. Furthermore, one should distinguish between regulär, surface-oriented weathering profiles and irregular ones which may be caused by oxidation and dissolution of circulating groundwater and/or by special tectonic fracture zones and faults (fig. 4). Examples of surface-oriented weathering profiles including some explanations are shown for the following rock types: Granite and basalt (fig. 5), sandstones and bedded limestones (fig. 6), mudstones and tili (fig. 7).

Finally, some consequences of the weathering profile for shallow foundations, permeability, angle and stability of slope cuts, “back-weathering”, development of failure planes, ground-heave, and dam construction are briefly discussed (fig. 8).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bell FG (1981) Engineering properties of soils and rocks. 149 p, Butterworth, LondonGoogle Scholar
  2. Bjerrum E (1967) Progressive failure in slopes of overconsolidated plastic clay and clay shales. Proc Amer Soc Civ Engineer 92, SM5: 2–49Google Scholar
  3. Brunsden D (1979) Weathering. IN: Embleton C & Thornes J (eds) Process in Geomorphology. Arnold, London: 7 2–129Google Scholar
  4. Burnett AD, Mimm D, Epps RJ (1979) The engineering geological description of carbonate suite rocks and soils. Ground Engineering 12 no 2: 41–48, Foundation Publ, Bentwood, EnglandGoogle Scholar
  5. Clayton CRI, Simons NE, Matthews MC (1982) Site investigation. 424 p Halsted Press, New YorkGoogle Scholar
  6. Dearman WR (1976) Weathering Classification in the characterization of rock: a revision. Bull Internat Assoc Engineer Geol 13: 123–127CrossRefGoogle Scholar
  7. Einsele G (1983) Mechanismus und Tiefgang der Verwitterung bei mesozoischen Ton- und Mergelsteinen. Z dt geol Ges 134: 289–315, HannoverGoogle Scholar
  8. Gamon TI (1983) A comparison of existing schemes for the engineering description and Classification of weathered rocks in Hong Kong. Bull Internat Ass Engineering Geology 28: 225–23 2, ParisCrossRefGoogle Scholar
  9. Gerrard AJ (1981) Söils and landforms. 219 p, Allen & Unwin, LondonGoogle Scholar
  10. Gierer H (1981) Standsicherheit von Einschnittsböschungen in wenig verwitterten überkonsolidierten Peliten Südwestdeutschlands. Diss Geowiss Fak Univ Tübingen: 118 S, 41 Abb, 1 Tab, 21 FotosGoogle Scholar
  11. Gründer J (1978) Struktureller Aufbau und geomechanische Eigenschaften eines stark überkonsolidierten Tones — am Beispiel des Feuerletten. Veröff Grundbauinst Landesgewerbeanstalt Bayern H 31: 100 S, 80 Abb, NürnbergGoogle Scholar
  12. Heitfeld KH (1965) Hydro- und baugeologische Untersuchungen über die Durchlässigkeit des Untergrundes an Talsperren des Sauerlandes. Geol Mitt 5: 210 S, AachenGoogle Scholar
  13. Hesse KH (1978) Zur ingenieurgeologischen Gebirgscharakteristik und deren Einfluß auf Entwurf und Sicherung von Felsbauwerken im Rheinischen Schiefergebirge. Mitt Ing u Hydrogeol 6: 172 S, AachenGoogle Scholar
  14. International Society for Rock Mechanics, Commission on Classification of rocks and rock masses (1981) Basic geotechnical description of rock masses. Internat J Rock Mech Min Sei & Geomech Abstr 18: 85–110Google Scholar
  15. Keck O (1976) Ingenieurgeologische Untersuchungen an Verwitterungsgesteinen des Oberdevons im Raum Aachen. Mitt Ing u Hydrogeol 2: 171 S, AachenGoogle Scholar
  16. Kühn G (1973) Zur Frage der oberflächennahen Auflockerung Im Geschiebemergel Nordwestdeutschlands. Diss Math-Naturwiss Fak Univ Kiel: 120 S, 19 Photo–AbbGoogle Scholar
  17. Lempp Ch (1979) Die Entfestigung überkonsolidierter, pelitischer Gesteine Süddeutschlands und ihr Einfluß auf die Tragfähigkeit des Straßenuntergrundes. Diss Univ Tübingen: 234 S, 91 Abb, 18 Tab, 12 FototafelnGoogle Scholar
  18. Lempp Ch (1981) Weatherability of overconsolidated pelitic rocks of the Keuper und Jurassic in Southwestern Germany. Bull Internat Ass Engineer Geol 23: 101–108, KrefeldGoogle Scholar
  19. Levine ER, Ciolkosz EJ (1983) Soil development in tili of various ages in northwestern Pennsylvania. Quarternary Res 19: 85–99CrossRefGoogle Scholar
  20. Lozinska-Stepien H, Pozniak R (1982) Engineering-geological features of a massif of carbonate rocks for construction of water reservoirs. Bull Internat Ass Engineer Geol 25: 127–131, ParisGoogle Scholar
  21. Lukashev KI (1970) Lithology and geochemistry of the weathering crust. Israel Progr for Scientific Translations, Keter Press, Jerusalem, 368 pGoogle Scholar
  22. Matula M, IAEG Commission on Engineering Geological Mapping (1981) Rock and soil description and Classification for engineering geological mapping. Bull Internat Ass Engineer Geology 24: 23 5–274, Aachen/EssenGoogle Scholar
  23. Merklein I (1982) Limitierende Faktoren des Trocknungs-Befeuchtungs- Zerfalls überkonsolidierter Tonsteine. Diss Geowiss Fak Univ Tübingen: 96 S, 55 Abb, 8 Tab, 11 FototafGoogle Scholar
  24. Müller L (1970) Geomechanische Auswirkungen von Abtragungsvorgängen. Geol Rundschau 59: 16 3–178, StuttgartGoogle Scholar
  25. Ollier CD (1975) Weathering. 2nd Ed, 304 p, Longman, LondonGoogle Scholar
  26. Overbeck R (1981) Verwitterung von Mergelkalken durch Trocknungs-Befeuchtungs- Zerfall. Ber 3 Nat Tag Ingenieurgeol: 225–232, AnsbachGoogle Scholar
  27. Prinz H (1982) Abriß der Ingenieurgeologie. Enke, Stuttgart, 419 SGoogle Scholar
  28. Selby MJ (1980) A rock mass strength Classification for geomorphic purposes: with tests from Antarctica and New Zealand. Z Geomorph NF 24, 1: 31–51, Berlin, StuttgartGoogle Scholar
  29. Selby MJ (1982) Hillslope materials and processes. Univ Press, Oxford, 264 pGoogle Scholar
  30. Small RJ, Clark MJ (1982) Slopes and weathering. Cambridge Univ Press: 112 PGoogle Scholar
  31. Tietze R (1981) Ingenieurgeologische, mineralogische und geochemische Untersuchungen zum Problem der Baugrundhebungen im Lias epsilon (Posidonienschiefer) Baden-Württembergs. Jh Geol Landesamt Baden- Württemberg 22: 109–185, Freibrug i BrGoogle Scholar
  32. Wallrauch E (1969) Verwitterung und Entspannung bei überkonsolidierten tonig-schluffigen Gesteinen Südwestdeutschlands. Diss Univ Tübingen: 184 S, 46 Abb, 7 TafGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • G. Einsele
    • 1
  • K.-H. Heitfeld
    • 2
  • Ch. Lempp
    • 3
  • K. Schetelig
    • 4
  1. 1.Geologisch-Paläontologisches Institut der Universität TübingenTübingenGermany
  2. 2.Lehrstuhl für Ingenieurgeologie und HydrogeologieRWTH AachenAachenGermany
  3. 3.Institut für Boden- und FelsmechanikUniversität KarlsruheKarlsruheGermany
  4. 4.Geologisch-Paläontologisches InstitutTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations