Skip to main content

Properties of Cytoplasmic Transmitters of Excitation in Vertebrate Rods and Evaluation of Candidate Intermediary Transmitters

  • Conference paper
  • 67 Accesses

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

Abstract

A cytoplasmically diffusing substance or transmitter must carry the message of excitation from the vertebrate rod disk membrane to the rod plasma membrane, there effecting a decrease in the light-sensitive membrane current. A number of general properties of the transmitter molecule that communicates excitation to the rod plasma membrane either can be deduced from or are strongly constrained by facts of rod physiology. Here we analyze seven general properties of an excitational transmitter: a) transmitter sign (positive or negative concentration change induced by light); b) multi-order sequence of events in production/ destruction; c) numerical gain in production; d) restricted longitudinal diffusion along the outer segment; e) buffering effects on gain and diffusion coefficient; f) limited transmitter lifetime; and g) linearity of transmitter production/reduction with light intensity. Although only cGMP and calcium have been hypothesized to be the molecule communicating excitation to the plasma membrane, other substances have been hypothesized to serve as intermediary transmitters in excitation. We examine the following five intermediary transmitter candidates in the light of the seven general properties: (i) G-protein; (ii) protons; (iii) 5′GMP; (iv) cGMP-dependent protein kinase; and (v) inositol-1, 4, 5-trisphosphate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins, P.W. 1978. Physical Chemistry. San Francisco: Freeman.

    Google Scholar 

  2. Bader, C.R.; MacLeish, P.R.; and Schwartz, E.A. 1979. A voltageclamp study of the light response in solitary rods of the tiger salamander. J. Physiol. 296: 1–26.

    PubMed  CAS  Google Scholar 

  3. Baehr, W.; Morita, E.A.; Swanson, R.J.; and Applebury, M.L. 1982. Characterization of bovine rod outer segment G-protein. J. Biol. Chem. 257: 6452–6460.

    PubMed  CAS  Google Scholar 

  4. Baylor, D.A.; Hodgkin, A.L.; and Lamb, T.D. 1974. The electrical response of turtle cones to flashes and steps of light. J. Physiol. 242: 685–727.

    PubMed  CAS  Google Scholar 

  5. Baylor, D.A.; Lamb, T.D.; and Yau, K.-W. 1979a. The membrane current of single rod outer segments. J. Physiol. 288: 589–611.

    PubMed  CAS  Google Scholar 

  6. Baylor, D.A.; Lamb, T.D.; and Yau, K.-W. 1979b. Responses of retinal rods to single photons. J. Physiol. 288: 613–634.

    PubMed  CAS  Google Scholar 

  7. Baylor, D.A.; Matthews, G.; and Yau, K.-W. 1980. Two components of electrical dark noise in toad retinal rod outer segments. J. Physiol. 309: 591–621.

    PubMed  CAS  Google Scholar 

  8. Baylor, D.A.; Matthews, G.; and Yau, K.-W. 1983. Temperature effects on the membrane current of retinal rods of the toad. J. Physiol. 337: 723–734.

    PubMed  CAS  Google Scholar 

  9. Baylor, D.A., and Nunn, B.J. 1985. Electrical properties of the light-sensitive conductance of salamander rods. J. Physiol., in press.

    Google Scholar 

  10. Bennett, N. 1982. Light-induced interactions between rhodopsin and the GTP-binding protein: relation with phosphodiesterase activation. Eur. J. Biochem. 123: 133–139.

    Article  PubMed  CAS  Google Scholar 

  11. Berger, S.J.; DeVries, G.W.; Carter, J.G.; Schulz, D.W.; Passonneau, P.N.; Lowry, O.H.; and Ferrendelli, J.A. 1980. The distribution of the components of the cGMP cycle in retina. J. Biol. Chem. 255: 3128–3133.

    PubMed  CAS  Google Scholar 

  12. Berridge, M.J. 1983. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212: 849–858.

    PubMed  CAS  Google Scholar 

  13. Bodoia, R.D., and Detwiler, P.B. 1984. Patch-clamp study of the light response of isolated frog retinal rods. Biophys. J. 45: 337a.

    Article  Google Scholar 

  14. Bownds, M.D. 1981. Biochemical pathways regulating transduction in frog photoreceptor membranes. Curr. Top. Membr. Trans. 15: 203–214.

    CAS  Google Scholar 

  15. Brown, J.E.; Rubin, L.J.; Ghalayini, A.J.; Taver, A.P.; Irvine, R.F.; Berridge, M.J.; and Anderson, R.E. 1984. Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311: 160–162.

    Article  PubMed  CAS  Google Scholar 

  16. Chabre, M.; Vuong, M.; and Stryer, L. 1982. Anisotropy of the infrared light-scattering changes induced by illumination of oriented retinal rod outer segments. Biophys. J. 37: 247a.

    Google Scholar 

  17. Clack, J.W.; Oakley, B. II.; and Stein, P.J. 1983. Injection of GTP-binding protein or cGMP phosphodiesterase hyperpolarizes retinal rods. Nature 305: 50–52.

    Article  PubMed  CAS  Google Scholar 

  18. Cohen, A.I. 1968. New evidence supporting the linkage to extracellular space of outer segment saccules of trog cones but not rods. J. Cell. Biol. 37: 424–444.

    Article  PubMed  CAS  Google Scholar 

  19. Corson, D.W., and Fein, A. 1983a. Chemical excitation of Limulus photoreceptors. I. Phosphatase inhibitors induce discrete wave production in the dark. J. Gen. Physiol. 82: 639–657.

    CAS  Google Scholar 

  20. Corson, D.W., and Fein, A, 1983b. Chemical excitation of Limulus photoreceptors. II. Vanadate, GTP-g-S and fluoride prolong excitation evoked by dim flashes of light. J. Gen. Physiol. 82: 659–677.

    CAS  Google Scholar 

  21. Cote, R.H.; Biernbaum, M.S.; Nicol, G.D.; and Bownds, M.D. 1984. Light-induced decreases in cGMP concentration precede changes in membrane permeability in frog rod photoreceptors. J. Biol. Chem. 259: 9635–9641.

    PubMed  CAS  Google Scholar 

  22. Crank, J. 1975. The Mathematics of Diffusion, 2nd ed. London: Oxford Press.

    Google Scholar 

  23. Dearry, A. 1981. Rod outer segment phosphodiesterase: a study on light-induced activity in whole retina using bromcresol purple. Ph.D. Dissertation, University of Pennsylvania.

    Google Scholar 

  24. DeFelice, L.J. 1981. Introduction to Membrane Noise. New York: Plenum.

    Book  Google Scholar 

  25. Detwiler, P.B.; Conner, J.D.; and Bodoia, R.D. 1982. Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature 300: 59–61.

    Article  PubMed  CAS  Google Scholar 

  26. Dratz, E.A.; Miljanich, G.P.; Nemes, P.P.; Gaw, J.E.; and Schwartz, S. 1979. The structure of rhodopsin and its disposition in the rod outer segment disk membrane. Photochem. Photobiol. 29: 661–670.

    Article  PubMed  CAS  Google Scholar 

  27. Eigen, M. 1973. Diffusion control in biochemical reactions. In Quantum Statistical Mechanics in the Natural Sciences, eds. S.L. Mintz and S.M. Widmayer, pp. 37–61. New York: Plenum.

    Google Scholar 

  28. Emrich, H. 1971. Optical measurements of the rapid pH change in the visual process during the metarhodopsin I-II reaction. Z. Naturforsch. 266: 352–356.

    Google Scholar 

  29. Farber, D.B.; Brown, B.M.; and Lolley, R.N. 1978. Cyclic GMP: proposed role in visual function. Vision Res. 18: 497–500.

    Article  PubMed  CAS  Google Scholar 

  30. Fein, A.; Payne, R.; Corson, D.W.; Berridge, M.J.; and Irvine, R.F. 1984. Photoreceptor excitation and adaptation by inositol-1, 4, 5-trisphosphate. Nature 311: 157–160.

    Article  PubMed  CAS  Google Scholar 

  31. Fliesler, S.J., and Anderson, R.E. 1983. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid Res. 22: 79–131.

    Article  PubMed  CAS  Google Scholar 

  32. Fung, B.K.; Hurley, J.B.; and Stryer, L. 1981. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl. Acad. Sci. USA 78: 152–156.

    Article  PubMed  CAS  Google Scholar 

  33. Fung, B.K., and Stryer, L. 1980. Photolyzed rhodopsin catalyzes the exchange of GTP for bound GDP in retinal rod outer segments. Proc. Natl. Acad. Sci. USA 77: 2500–2504.

    Article  CAS  Google Scholar 

  34. Gedney, C., and Ostroy, S.E. 1978. Hydrogen ion effects of the vertebrate photoreceptor: the pK’s of ionizable groups affecting cell permeability. Arch. Biochem. Biophys. 188: 105–113.

    Article  PubMed  CAS  Google Scholar 

  35. George, J.S., and Hagins, W.A.H. 1983. Control of Ca2+ in rod outer segment disks by light and cGMP. Nature 303: 344–348.

    Article  PubMed  CAS  Google Scholar 

  36. Godchaux, W. III., and Zimmerman, W.F. 1979. Membrane-dependent guanine nucleotide binding and GTP-ase activities of soluble protein from bovine rod cell outer segments. J. Biol. Chem. 254: 7874–7884.

    PubMed  CAS  Google Scholar 

  37. Goldberg, N.D.; Ames, A. III.; Gander, J.E.; and Walseth, T.F. 1983. Magnitude of increase in retinal cGMP metabolic flux determined by

    Google Scholar 

  38. O incorporation into nucleotide a-phosphoryls corresponds with intensity of photic stimulation. J. Biol. Chem. 258: 9213-9219.

    Google Scholar 

  39. Gomperts, B.D. 1983. Involvement of guanine nucleotide-binding protein in the gating of Ca2+ by receptors. Nature 306: 64–66.

    Article  PubMed  CAS  Google Scholar 

  40. Govardovskii, V.I., and Berman, A.L. 1981. Light-induced changes of cGMP content in frog retinal rod outer segments measured with rapid freezing and microdissection. Biophys. Struct. Mech. 7: 125–130.

    Article  PubMed  CAS  Google Scholar 

  41. Greengard, P. 1978. Phosphorylated proteins as physiological effectors. Science 199: 146–152.

    Article  PubMed  CAS  Google Scholar 

  42. Hagins, W.A.; Penn, R.D.; and Yoshikami, S. 1970. Dark current and photocurrent in retinal rods. Biophys. J. 10: 380–412.

    Article  PubMed  CAS  Google Scholar 

  43. Hagins, W.A., and Yoshikami, S. 1977. Intracellular transmission of visual excitation in photoreceptors: electrical effects of chelating agents introduced into rods by vesicle fusion. In Vertebrate Photoreception, eds. H.B. Barlow and P. Fatt, pp. 97–139. New York: Academic.

    Google Scholar 

  44. Kilbride, P., and Ebrey, T.G. 1979. Light-initiated changes of cGMP levels in the frog retina measured with quick-freezing techniques. J. Gen. Physiol. 74: 415–426.

    Article  PubMed  CAS  Google Scholar 

  45. Kühn, H. 1980. Light-and GTP-regulated interaction of GTP-ase and other proteins with bovine photoreceptor membranes. Nature 283: 587–589.

    Article  PubMed  Google Scholar 

  46. Kühn, H. 1981. Interactions of rod cell proteins with the disk membranes: influence of light, ionic strength and nucleotides. Curr. Top. Membr. Trans. 15: 172–199.

    Google Scholar 

  47. Kühn, H.; Bennett, N.; Michel-Villaz, M.; and Chabre, M. 1981. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analyses from light-scattering changes. Proc. Natl. Acad. Sci. USA 78: 6873–6877.

    Article  PubMed  Google Scholar 

  48. Lamb, T.D. 1984. Effects of temperature on toad rod photocurrents. J. Physiol. 346: 557–578.

    PubMed  CAS  Google Scholar 

  49. Lamb, T.D. 1984. Electrical responses of photoreceptors. In Recent Advances in Physiology, ed. P.F. Baker. London: Churchill Livingstone.

    Google Scholar 

  50. Lamb, T.D.; McNaughton, P.A.; and Yau, K.-W. 1981. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol. 319: 463–496.

    PubMed  CAS  Google Scholar 

  51. Lewis, J.W.; Miller, J.L.; Mendel-Hartvig, J.; Schaechter, L.E.; Kliger, D.S.; and Dratz, E.A. Sensitive light-scattering probe of enzymatic processes in retinal rod photoreceptor membranes. Proc. Natl. Acad. Sci. USA 81: 743–747.

    Google Scholar 

  52. Liebman, P.A.; Mueller, P.; and Pugh, E.N., Jr. 1984. Protons suppress the dark current of frog retinal rods. J. Physiol. 347: 85–110.

    PubMed  CAS  Google Scholar 

  53. Liebman, P.A., and Pugh, E.N., Jr. 1980. ATP mediates rapid reversal of cGMP phosphodiesterase activation in visual receptor membranes. Nature 287: 734–736.

    Article  PubMed  CAS  Google Scholar 

  54. Liebman, P.A., and Pugh, E.N., Jr. 1981. Control of rod disk membrane phosphodiesterase and a model for visual transduction. Curr. Top. Membr. Trans. 15: 157–169.

    CAS  Google Scholar 

  55. Liebman, P.A., and Pugh, E.N., Jr. 1982. Gain, speed and sensitivity of GTP-binding vs. PDE activation in visual excitation. Vision Res. 22: 1475–1480.

    CAS  Google Scholar 

  56. Liebman, P.A.; Weiner, H.L.; and Dryzmala, R.D. 1982. Lateral diffusion of visual pigment in rod disk membranes. Meth. Enzym. 81: 660–668.

    Article  PubMed  CAS  Google Scholar 

  57. Lipton, S.A.; Rasmussen, H.; and Dowling, J.E. 1977. Electrical and adaptive properties of rod photoreceptors in Bufo marinus. II. Effects of cyclic nucleotides and prostaglandins. J. Gen. Physiol. 70: 771–791.

    Article  PubMed  CAS  Google Scholar 

  58. MacLeish, P.R.; Schwartz, E.A.; and Tachibana, M. 1984. Control of the generator current in solitary rods of the Ambystoma tigrinum retina. J. Physiol. 348: 645–664.

    PubMed  CAS  Google Scholar 

  59. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Trans. 9: 71–144.

    Article  CAS  Google Scholar 

  60. McLaughlin, S., and Brown, J. 1981. Diffusion of calcium ions in retinal rods. J. Gen. Physiol. 77: 475–487.

    Article  PubMed  CAS  Google Scholar 

  61. Miljanivich, G.P.; Nemes, P.P.; White, D.L.; and Dratz, E.A. 1981. The asymmetric distribution of phosphotidylethanolamine, phosphatidylserine and fatty acids of the bovine retinal rod outer segment disk membrane. J. Membr. Biol. 60: 249–255.

    Article  Google Scholar 

  62. Miller, W.H., and Nicol, G.D. 1979. Evidence that cGMP regulates membrane potential in rod photoreceptors. Nature 280: 64–66.

    Article  CAS  Google Scholar 

  63. Mueller, P., and Pugh, E.N., Jr. 1983. Protons block the dark current of isolated retinal rods. Proc. Natl. Acad. Sci. USA 80: 1892–1896.

    Article  PubMed  CAS  Google Scholar 

  64. Nicol, G.D., and Miller, W.H. 1978. Cyclic GMP injected into retinal rod outer segments increases latency and amplitude of response to illumination. Proc. Natl. Acad. Sci. USA 75: 5217–5220.

    Article  PubMed  CAS  Google Scholar 

  65. Nishizuka, Y. 1984. Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370.

    Article  PubMed  CAS  Google Scholar 

  66. Nunn, B.J., and Baylor, D.A. 1982. Visual transduction in retinal rods of the monkey Macaca fascicularis. Nature 299: 726–728.

    Article  PubMed  CAS  Google Scholar 

  67. Olive, J. 1980. The structural organization of mammalian retinal disk membrane. Int. Rev. Cytol. 64: 107–169.

    Article  PubMed  CAS  Google Scholar 

  68. Penn, R.D., and Hagins, W.A. 1972. Kinetics of the photocurrent of retinal rods. Biophys. J. 12: 1073–1094.

    Article  PubMed  CAS  Google Scholar 

  69. Pfister, C.; Kühn, H.; and Chabre, M. 1983. Interaction between photoexcited rhodopsin and peripheral enzymes: influence of the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Eur. J. Biochem. 136: 489–499.

    Article  PubMed  CAS  Google Scholar 

  70. Pinto, L.H., and Ostroy, S.E. 1978. Ionizable groups and conductances of the rod photoreceptor membrane. J. Gen. Physiol. 71: 329–345.

    Article  PubMed  CAS  Google Scholar 

  71. Polans, A.S.; Hermolin, J.; and Bownds, M.D. 1979. Light-induced dephosphorylation of two proteins in frog rod outer segments. J. Gen. Physiol. 74: 595–613.

    Article  PubMed  CAS  Google Scholar 

  72. Pugh, E.N., Jr., and Liebman, P.A. 1980. Delays and sensitivity support lateral diffusion hypothesis of multiple PDE activation by single rhodopsin. Fed. Proc. 39: 1815a.

    Google Scholar 

  73. Robinson, W.E., and Hagins, W.A. 1979. GTP hydrolysis in intact rod outer segments and the transmitter cycle in visual excitation. Nature 280: 398–400.

    Article  PubMed  CAS  Google Scholar 

  74. Riippel, H., and Hagins, W.A. 1973. Spatial origin of the fast photovoltage in retinal rods. In Biochemistry and Physiology of Visual Pigments, ed. H. Langer, pp. 257–262. New York: Springer.

    Google Scholar 

  75. Schmidt, S.Y. 1983. Light enhances the turnover of phosphatidylinositol in rat retinas. J. Neurochem. 40: 1630–1638.

    Article  PubMed  CAS  Google Scholar 

  76. Schnapf, J. 1983. Dependence of the single photon response on longitudinal position of absorption in toad rod outer segments. J. Physiol. 343: 147–159.

    PubMed  CAS  Google Scholar 

  77. Sitaramayya, A., and Liebman, P.A. 1983a. Mechanism of ATP-dependent quench of phosphodiesterase activation in rod disk membranes. J. Biol. Chem. 258: 1205–1209.

    PubMed  CAS  Google Scholar 

  78. Sitaramayya, A., and Liebman, P.A. 1983b. Phosphorylation of rhodopsin and quenching of cGMP phosphodiesterase activation by ATP at weak bleaches. J. Biol. Chem. 258: 12106–12109.

    PubMed  CAS  Google Scholar 

  79. Streb, H.; Irvine, R.F.; Berridge, M.J.; and Schulz, I. 1983. Release of Ca2+ from a non-mitochondrial store in pancreatic acinar cells by inositol-1, 4, 5-trisphosphate. Nature 306: 67–69.

    Article  PubMed  CAS  Google Scholar 

  80. Szabo, A.; Schulten, K.; and Schulten, Z. 1980. First passage time approach to diffusion-controlled reactions. J. Chem. Phys. 72: 4350–4357.

    Article  CAS  Google Scholar 

  81. Wormington, C.M., and Cone, R.A. 1978. Ionic blockage of the light-regulated sodium channels in isolated rod outer segments. J. Gen. Physiol. 71: 657–681.

    Article  PubMed  CAS  Google Scholar 

  82. Yee, R., and Liebman, P.A. 1978. Light-activated phosphodiesterase of the rod outer segment: kinetic parameters of activation and deactivation. J. Biol. Chem. 253: 8902–8909.

    PubMed  CAS  Google Scholar 

  83. Yoshikami, S., and Hagins, W.A. 1984. Phototransduction in rods does not require a change in cytoplasmic pH. Biophys. J. 45: 339a.

    Google Scholar 

  84. Yoshikami, S.; Robinson, W.E.; and Hagins, W.A. 1974. Topology of the outer segment membranes of retinal rods and cones revealed by a fluorescent probe. Science 185: 1176–1179.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Pugh, E.N., Cobbs, W.H. (1986). Properties of Cytoplasmic Transmitters of Excitation in Vertebrate Rods and Evaluation of Candidate Intermediary Transmitters. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics