Group Report
  • E. N. PughJr.
  • J. E. Brown
  • T. D. Lamb
  • K. Hamdorf
  • B. Minke
  • P. Hillman
  • D. R. Pepperberg
  • P. Hochstrate
  • J. Schwemer
  • W. J. M. Keiper
  • R. Shapley
  • K. Kirschfeld
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 34)


Adaptation is the modulation of the visual transduction process by prior illumination. Accordingly, its understanding depends on and contributes to understanding of the visual transduction process itself. Unfortunately, this mutual influence has not yet been very fruitful, perhaps because it calls for at least the beginnings of a complete model of the transduction process. Most of the work on adaptation, some highlights of which are reported here, have therefore been studies of the phenomenology of adaptation and of the chemicals which directly intermediate it. These studies are still largely groping in the dark, especially in vertebrates, and are therefore necessarily more tentative and less focussed than those of the transduction process itself, about which more is known. The formulation of open questions with which this report ends suggests, however, that the time has come when the state of our biochemical understanding of the transduction process (Chabre and Applebury and Applebury et al., both this volume) will make possible direct exploitation of the constraints imposed by adaptational data.


Visual Pigment Light Adaptation Group Report Adaptational Transmitter Turtle Retina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Bastian, B.L., and Fain, G.L. 1979. Light adaptation in toad rods: requirement for an internal messenger which is not calcium. J. Physiol. 297: 493–520.PubMedGoogle Scholar
  2. (2).
    Bastian, B.L., and Fain, G.L. 1982. The effects of low calcium and background light on the sensitivity of toad rods. J. Physiol. 330: 307–329.PubMedGoogle Scholar
  3. (3).
    Baylor, D.A.; Hodgkin, A.L.; and Lamb, T.D. 1974. The electrical response of turtle cones to flashes and steps of light. J. Physiol. 242: 729–758.PubMedGoogle Scholar
  4. (4).
    Baylor, D.A.; Nunn, B.J.; and Schnapf, J. 1984. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. 357: 575–607.PubMedGoogle Scholar
  5. (5).
    Bertrand, D.; Fuortes, M.G.F.; and Pochobrodsky, J. 1978. Actions of EGTA and high calcium on the cones in the turtle retina. J. Physiol. 275: 419–437.PubMedGoogle Scholar
  6. (6).
    Borsellino, A.; Fuortes, M.G.F.; and Smith, T.G. 1965. Visual responses in Limulus. Cold S.H. Symp. Quant. Biol. 30: 429–443.Google Scholar
  7. (7).
    Brown, J.E., and Rubin, L.J. 1984. A direct demonstration that inositol trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. Biochem. Biophys. Res. Commun. 125: 1137–1142.PubMedCrossRefGoogle Scholar
  8. (32).
    Stieve, H.; Pflaum, M.; Klomfaß, J.; and Gaube, H. 1985. Calcium/ sodium binding competition in the gating of light-activated membrane conductance studied by voltage clamp technique in Limulus ventral nerve photoreceptor. Z. Naturforsch. 40c: 278–291.Google Scholar
  9. (9).
    Clack, J.W.; Oakley, B., II; and Pepperberg, D.R. 1982. Light-dependent effects of a hydrolysis-resistant analog of GTP on rod photoresponses in the toad retina. Proc. Natl. Acad. Sci. USA 79: 2690–2694.PubMedCrossRefGoogle Scholar
  10. (10).
    Clack, J.W., and Pepperberg, D.R. 1982. Desensitization of skate photoreceptors by bleaching and background light. J. Gen. Physiol. 80: 863–883.PubMedCrossRefGoogle Scholar
  11. (11).
    Claßen-Linke, I., and Stieve, H., 1981. Time course of dark adaptation in the Limuls ventral nerve photoreceptor — measured as constant response amplitude curve — and its dependence upon extracellular calcium. Biophys. Struct. Mech. 7: 336–337.Google Scholar
  12. (8).
    Brown, J.E., and Rubin, L.J. 1985. Inositol trisphosphate induces an increase in intracellular ionized calcium in intact and functioning Limulus photoreceptors. Biophys. J. 47: 38 (Abstract).Google Scholar
  13. (13).
    Dowling, J.E., and Ripps, H. 1970. Visual adaptation in the retina of the skate. J. Gen. Physiol. 56: 491–520.PubMedCrossRefGoogle Scholar
  14. (14).
    Fesenko, E.E.; Kolesnikov, S.S.; and Arkadiy, A.L. 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313: 310–313.PubMedCrossRefGoogle Scholar
  15. (15).
    Fuortes, M.G.F., and Hodgkin, A.L. 1964. Changes in time scale and sensitivity in the ommatidia of Limulus. J. Phyisol. 172: 239–263.Google Scholar
  16. (16).
    Green, D.G. 1973. Scotopic and photopic components of the rat electroretinogram. J. Physiol. 228: 781–797.PubMedGoogle Scholar
  17. (12).
    Corson, D.W.; Fein, A.; and Payne, R. 1984. Detection of an inositol 1, 4, 5 trischosphate-induced rise in intracellular free calcium with aequorin m Limulus ventral photoreceptors. Biol. Bull. 167: 524 (Abstract).Google Scholar
  18. (18).
    Grzywacz, N.M., and Hillman, P, 1985. Statistical test of linearity of Shotoreceptor transduction process: Limulus passes, others fail. Proc. Natl. Acad. Sci. USA 82: 232–235.PubMedCrossRefGoogle Scholar
  19. (19).
    Hamdorf, K. 1979. The physiology of invertebrate visual pigments. In Handbook of Sensory Physiology. Comparative Physiology and Evolution of Vision in Invertebrates. A. Invertebrate Photoreceptors, ed. H. Autrum, vol. 7, pt. 6A, pp. 145–224. Berlin: Springer-Verlag.Google Scholar
  20. (20).
    Hamdorf, K., and Razmjoo, S. 1979. Photoconvertible pigment states and excitation in Calliphora: the induction and properties of the prolonged depolarizing afterpotential. Biophys. Struct. Mech. 5: 137–161.CrossRefGoogle Scholar
  21. (21).
    Hemilä, S., and Reuter, T. 1981. Longitudinal spread of adaptation in the rods of the frog’s retina. J. Physiol. 310: 501–528.PubMedGoogle Scholar
  22. (22).
    Hochstrate, P., and Hamdorf, K. 1985. The influence of extracellular calcium on the response of fly photoreceptors. J. Comp. Physiol. A 156: 53–64.CrossRefGoogle Scholar
  23. (17).
    Grzywacz, N.M. 1985. On individual and interactive properties of the single photon responses in invertebrate photoreceptors. Ph.D. Thesis, Hebrew University, Jerusalem.Google Scholar
  24. (23).
    Ivens, I., and Stieve, H. 1984. Influence of the membrane potential on the intracellular light induced Ca2+ concentration change of the Limulus ventral photoreceptor monitored by Arsenazo III under voltage clamp conditions. Z. Naturforsch. 39c: 985–992.Google Scholar
  25. (25).
    Lamb, T.D. 1980. Spontaneous quantal events induced in toad rods by pigment bleaching. Nature 287: 349–351.PubMedCrossRefGoogle Scholar
  26. (26).
    Lamb, T.D.; McNaughton, P.A.; and Yau, K.-W., 1981. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol. 319: 463–496.PubMedGoogle Scholar
  27. (27).
    Liebman, P.A., and Pugh, E.N., Jr. 1980. ATP mediates rapid reversal of cGMP phosphodiesterase activation in visual receptor membranes. Nature 287: 734–736.PubMedCrossRefGoogle Scholar
  28. (28).
    Lisman, J.E. 1984. Properties of visual pigment off-switch. Inv. Ophthalmol. Vis. Sci. 25: 157.Google Scholar
  29. (29).
    Minke, B., and Kirschfeld, K. 1984. Non-local interactions between light-induced processes in Calliphora photoreceptors. J. Comp. Physiol. A 154: 175–187.CrossRefGoogle Scholar
  30. (30).
    Paulsen, R., and Bentrop, J. 1984. Phosphorylation of opsin induced by irradiation of blowfly retinae. J. Comp. Physiol. A 155: 39–45.CrossRefGoogle Scholar
  31. (24).
    Keiper, W.J.M.; Schnakenberg, J.; and Stieve, H. 1984. Statistical analysis of quantum bump parameters in Limulus ventral photoreceptors. Z. Naturforsch. 39c: 781–790.Google Scholar
  32. (32).
    Pepperberg, D.R. 1984. Rhodopsin and visual adaptation: analysis of photoreceptor thresholds in the isolated skate retina. Vision Res. 24: 357–366.PubMedCrossRefGoogle Scholar
  33. (33).
    Pepperberg, D.R.; Brown, P.K.; Lurie, M.; and Dowling, J.E. 1978. Visual pigment and photoreceptor sensitivity in the isolated skate retina. J. Gen. Physiol. 71: 369–396.PubMedCrossRefGoogle Scholar
  34. (34).
    Pepperberg, D.R.; Lurie, M.; Brown, P.K.; and Dowling, J.E. 1976. Visual adaptation: effects of externally applied retinal on the light-adapted, isolated skate retina. Science 191: 394–396.PubMedCrossRefGoogle Scholar
  35. (35).
    Robinson, P.R.; Kawamura, S.; Abramson, B.; and Bownds, M.D. 1980. Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes. J. Gen. Physiol. 76: 631–645.PubMedCrossRefGoogle Scholar
  36. (36).
    Shapley, R., and Enroth-Cugell, C. 1984. Visual adaptation and retinal gain controls. Prog. Retinal Res. 3: 263–346.CrossRefGoogle Scholar
  37. (37).
    Stevens, S.S. 1970. Neural events and the psychophysical law. Science 170: 1043–1050.PubMedCrossRefGoogle Scholar
  38. (38).
    Stieve, H., and Bruns, M. 1983. Bump latency distribution and bump adaptation of Limulus ventral nerve photoreceptor in varied extracellular calcium concentration. Biophys. Struct. Mech. 9: 329–339.CrossRefGoogle Scholar
  39. (31).
    Paulsen, R.; Bentrop, J.; and Peters, K. 1984. Photochemistry and biochemistry of blowfly photoreceptor membranes. Vision Res. 24: 1700.CrossRefGoogle Scholar
  40. (39).
    Stieve, H.; Bruns, M.; and Gaube, H. 1984. The sensitivity shift due to light adaptation depending on the extracellular calcium ion concentration in Limulus ventral nerve photoreceptor. Z. Naturforsch. 39c: 662–679.Google Scholar
  41. (40).
    Stieve, H., and Klomfaß, J. 1981. Calcium dependence of light evoked membrane current signal and membrane voltage signal and their changes due to light adaptation in Limulus photoreceptor. Biophys. Struct. Mech. 7: 345.CrossRefGoogle Scholar
  42. (42).
    Tranchina, D.; Gordon, J.; and Shapley, R. 1984. Retinal light adaptation — evidence of a feedback mechanism. Nature 310: 314–316.PubMedCrossRefGoogle Scholar
  43. (43).
    Wong, F. 1978. Nature of light-induced conductance changes in ventral photoreceptors of Limulus. Nature 276: 76–79.PubMedCrossRefGoogle Scholar
  44. (44).
    Wong, F.; Knight, B.W.; and Dodge, F.A. 1980. Dispersion of latencies in photoreceptors of Limulus and the adapting bump model. J. Gen. Physiol. 76: 517–537.PubMedCrossRefGoogle Scholar
  45. (45).
    Yau, K.-W., and Haynes, L. 1985. Cyclic GMP-sensitive conductance in outer segment membrane catfish cones. Nature 317: 62–64.CrossRefGoogle Scholar
  46. (46).
    Yau, K.-W., and Nakatani, K. 1985. Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment. Nature 311: 661–663.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • E. N. PughJr.
  • J. E. Brown
  • T. D. Lamb
  • K. Hamdorf
  • B. Minke
  • P. Hillman
  • D. R. Pepperberg
  • P. Hochstrate
  • J. Schwemer
  • W. J. M. Keiper
  • R. Shapley
  • K. Kirschfeld

There are no affiliations available

Personalised recommendations