Skip to main content

Light-sensitive Channels, Pumps, and Carriers

Group Report

  • Conference paper
The Molecular Mechanism of Photoreception

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

  • 66 Accesses

Abstract

In planning our discussion, a series of broad questions relating to the structural and functional properties of light-sensitive channels were formulated as follows:

  1. 1)

    What do the characteristics of the macroscopic light-dependent current tell us about the molecular architecture of the channel?

  2. 2)

    What are the properties of the Na2+/Ca2+ exchange carrier and how do these influence both the operation of the transduction mechanism and out interpretation of results from experimental studies of the light-sensitive channel?

  3. 3)

    What do microscopic measurements (e.g., noise analysis, single-channel recordings) tell us about the light-sensitive channel and its gating?

  4. 4)

    How does the light-sensitive channel respond to possible transmitter substances?

  5. 5)

    What does the electrical fine-structure of the single-photon event (quantum bump) tell us about the mechanism of channel opening and closure?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Waloga, G.; Anderson, R.E.; and Irvine, R.F. 1985. Modulation of vertebrate photoreceptor potentials by injection of inositol triphosphate. Biophys. J. 47: 37a.

    Article  Google Scholar 

  2. Bacigalupo, J., and Lisman, J.E. 1983. Light-activated channels in Limulus ventral photoreceptors. Biophys. J. 45: 3–5.

    Article  Google Scholar 

  3. Bader, C.R.; MacLeish, P.R.; and Schwartz, E.A. 1979. A voltageclamp study of the light response in solitary rods of the tiger salamander. J. Physiol. 298: 1–6.

    Google Scholar 

  4. Baylor, D.A.; Matthews, G.; and Yau, K.-W. 1980. Two components of electrical dark noise in retinal rod outer segments. J. Physiol. 309: 591–621.

    PubMed  CAS  Google Scholar 

  5. Attwell, D., and Gray, P. 1984. Patch-clamp recording from isolated rods of the salamander retina. J. Physiol. 351: 9P.

    Google Scholar 

  6. Brown, J.E., and Coles, J.A. 1979. Saturation of the response to light in Limulus ventral photoreceptors. J. Physiol. 296: 373–392.

    PubMed  CAS  Google Scholar 

  7. Brown, J.E., and Mote, M.I. 1974. Ionic dependence of the reversal potential of the light response in Limulus ventral photoreceptors. J. Gen. Physiol. 63: 337–350.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, J.E.; Rubin, L.J.; Ghalyini, A.J.; Tarver, A.P.; Irvine, R.F.; Berridge, M.J.; and Anderson, R.E. 1984. Myo-inositol phosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311: 160–163.

    Article  PubMed  CAS  Google Scholar 

  9. Capovilla, M.; Caretta, A.; Cervetto, L.; and Torre, V. 1983. Ionic movements through light-sensitive channels of toad rods. J. Physiol. 343: 295–310.

    PubMed  CAS  Google Scholar 

  10. Caretta, A., and Cavaggioni, A. 1983. Fast ionic flux activated by cyclic GMP in the membrane of cattle rod outer segment. Eur. J. Biochem. 132: 1–8.

    Article  PubMed  CAS  Google Scholar 

  11. Cavaggioni, A., and Sorbi, R.T. 1981. Cyclic GMP releases calcium from disk membranes of vertebrate photoreceptors. Proc. Natl. Acad. Sci. USA 78: 3964–3968.

    Article  PubMed  CAS  Google Scholar 

  12. Detwiler, P.B.; Connor, J.D.; and Bodoia, R.D. 1982. Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature 300: 59–61.

    Article  PubMed  CAS  Google Scholar 

  13. Fain, G.L., and Lisman, J.E. 1981. Membrane conductances of photoreceptors. Prog. Biophys. Molec. Biol. 37: 91–147.

    Article  CAS  Google Scholar 

  14. Fein, A.; Payne, R.; Corson, D.W.; Berridge, M.J.; and Irvine, R.F. 1984. Photoreceptor excitation and adaptation by inositol 1, 4, 5-trisphosphate. Nature 311: 157–160.

    Article  PubMed  CAS  Google Scholar 

  15. Ferraro, M.; Levi, R.; Lovisolo, D.; and Vadacchino, M. 1983. Voltage noise in honeybee drone photoreceptors. Biophys. Struct. Mech. 10: 129–142.

    Article  CAS  Google Scholar 

  16. Fesenko, E.E.; Kolesnikov, S.S.; and Lyubarsky, A.L. 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313: 310–313.

    Article  PubMed  CAS  Google Scholar 

  17. Fuortes, M.G.F., and Hodgkin, A.L. 1964. Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. 172: 239–263.

    PubMed  CAS  Google Scholar 

  18. Gold, G.H., and Korenbrot, J.I. 1980. Light-induced Ca release by intact retinal rods. Proc. Natl. Acad. Sci. USA 77: 5557–5561.

    Article  PubMed  CAS  Google Scholar 

  19. Hanke, W., and Kaupp, U.B. 1984. Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers. Biophys. J. 46: 587–595.

    Article  PubMed  CAS  Google Scholar 

  20. Hodgkin, A.L.; McNaughton, P.A.; and Nunn, B. 1985. The ionic selectivity and calcium-dependence of the light-sensitive pathway in toad rods. J. Physiol. 358: 447–468.

    PubMed  CAS  Google Scholar 

  21. Bodoia, R.D., and Detwiler, P.B. 1984. Patch-clamp study of the light response of isolated frog retinal rods. Biophys. J. 45: 337a.

    Article  Google Scholar 

  22. Ivens, I., and Stieve, H. 1984. Influence of the membrane potential on the intracellular light-induced Ca2+ concentration change of the Limulus ventral photoreceptor monitored by Arsenazo III under voltage-clamp conditions. Z. Naturforsch. 39c: 986–992.

    CAS  Google Scholar 

  23. Koch, K.W., and Kaupp, U.B. 1985. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J. Biol. Chem. 260: 6788–6800.

    PubMed  CAS  Google Scholar 

  24. Keiper, W.; Schnakenberg, J.; and Stieve, H. 1984. Statistical analysis of quantum bump parameters in Limulus ventral photoreceptor. Z. Naturforsch. 39c: 781–790.

    Google Scholar 

  25. Lisman, J.E., and Brown, J.E. 1972. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J. Gen. Physiol. 59: 701–709.

    Article  PubMed  CAS  Google Scholar 

  26. MacLeish, P.R.; Schwartz, E.A.; and Tachibana, M. 1984. Control of the generator current in solitary rods of the Ambystoma tigrinum retina. J. Physiol. 348: 645–664.

    PubMed  CAS  Google Scholar 

  27. Matthews, H.R.; Torre, V.; and Lamb, T.D. 1985. Effects on the photoresponse of calcium buffers and cyclic GMP incorporated into the cytoplasm of retinal rods. Nature 313: 582–585.

    Article  PubMed  CAS  Google Scholar 

  28. Meldolesi, J.; Huttner, W.B.; Tsien, R.Y.; and Pozzan, T. 1984. Free cytoplasmic Ca2+ and neurotransmitter release: Studies on PC 12 cells and synaptosomes exposed to α-latrotoxin. Proc. Natl. Acad. Sci. USA 81: 620–624.

    Article  PubMed  CAS  Google Scholar 

  29. Lamb, T.D.; Matthews, H.R.; and Torre, V. 1985. Introduction of calcium buffers into rod photoreceptors of the salamander. J. Physiol. 369: 20.

    Google Scholar 

  30. Nicol, G.D.; Kaupp, U.B.; and Bownds, D. 1985. Phototransduction occurs in the absence of transmembrane calcium gradients in isolated frog rod photoreceptors. Biophys. J. 47: 100a.

    Google Scholar 

  31. Payne, R.; Fein, A.; and Corson, D.W. 1985. A rise in intracellular Ca2+ is necessary and perhaps sufficient for photoreceptor excitation and adaptation by inositol 1, 4, 5-trisphosphate. Biol. Bull., in press.

    Google Scholar 

  32. Stieve, H., and Bruns, M. 1978. Extracellular calcium, magnesium, and sodium ion competition in the conductance control of the photosensory membrane of Limulus ventral nerve photoreceptor. Z. Naturforsch. 33c: 574–579.

    CAS  Google Scholar 

  33. Torre, V.; Pasino, E.; Capovilla, M.; and Cervetto, L. 1981. Rod responses in the absence of external sodium in retinae treated with phosphodiesterase inhibitors. Exp. Brain Res. 44: 427–430.

    Article  PubMed  CAS  Google Scholar 

  34. Wong, F.; Knight, B.W.; and Dodge, F.A. 1980. Dispersion of latencies in photoreceptors of Limulus and the adapting bump model. J. Gen. Physiol. 79: 517–537.

    Article  Google Scholar 

  35. Yau, K.-W., and Nakatani, K. 1984. Cation selectivity of light-sensitive conductance in retinal rods. Nature 309: 352–354.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Owen, W.G. et al. (1986). Light-sensitive Channels, Pumps, and Carriers. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics