Advertisement

Triggering and Amplification

Group Report
  • M. L. Applebury
  • P. A. Liebman
  • M. Chabre
  • H. Prinz
  • J. B. C. Findlay
  • H. R. Saibil
  • N. D. Goldberg
  • A. Schleicher
  • U. B. Kaupp
  • L. Stryer
  • H. Kühn
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 34)

Abstract

The molecular events which link photon absorption to membrane conductance changes in photoreceptor cells begin with light activation of rhodopsin. In vertebrates, activated rhodopsin (Rh*) triggers an enzymatic cascade resulting in hydrolysis of cyclic GMP (cGMP). Some 80–90% of the protein in the photoreceptor rod outer segment is devoted to the execution or regulation of this enzymatic cascade. We may, therefore, specify light-controlled cGMP metabolism as a major function of the vertebrate rod outer segment. Indeed, cGMP has been proposed to serve as the important messenger linking photon absorption to membrane conductance changes. It may well play this role and be involved in other important cellular functions. It has not been our goal to settle this issue. Rather, we set out to examine thoroughly the rhodopsin-triggered mechanisms controlling metabolism at the molecular level. We extended our examination of these mechanisms to invertebrates, drawing on recent evidence and underlying expectations which suggest that initial events in visual transduction will be conserved among diverse species.

Keywords

Cholera Toxin Guanylate Cyclase Photoreceptor Membrane Noncatalytic Site cGMP Phosphodiesterase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Baehr, W.; Morita, E.; Swanson, R.; and Applebury, M.L. 1982. Characterization of bovine rod outer segement G-protein. J. Biol. Chem. 252: 6452–6460.Google Scholar
  2. (2).
    Berg, H.C., and Purcell, E.M. 1977. Physics of chemoreception. Biophys. J. 20: 193–219.PubMedCrossRefGoogle Scholar
  3. (3).
    Berridge, M.J., and Irvine, R.F. 1984. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.PubMedCrossRefGoogle Scholar
  4. (4).
    Brown, J.E.; Rubin, L.J.; Ghalayini, A.J.; Tarver, A.P.; Irvine, R.F.; Berridge, M.J.; and Anderson, R.E. 1984. Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311: 160–163.PubMedCrossRefGoogle Scholar
  5. (5).
    Capovilla, M.; Caretta, A.; Cavaggioni, A.; Cervetto, L.; and Sorbi, R.T. 1983. Metabolism and permeability in retinal rods. In Progress in Retinal Research, eds. N. Osborne and G. Chader, vol. 2, pp. 233–247. Oxford: Pergamon Press.Google Scholar
  6. (6).
    Caretta, A., and Cavaggioni, A. 1983. Fast ionic flux activated by cyclic GMP in the membrane of cattle rod outer segments. Eur. J. Biochem. 132: 1–8.PubMedCrossRefGoogle Scholar
  7. (7).
    Caretta, A.; Cavaggioni, A.; and Sorbi, R.T. 1979. Cyclic GMP and the permeability of the disks of the frog photoreceptors. J. Physiol. 295: 171–178.PubMedGoogle Scholar
  8. (8).
    Cavaggioni, A., and Sorbi, R.T. 1981. Cyclic GMP releases calcium from disc membranes of vertebrate photoreceptors. Proc. Natl. Acad. Sci. USA 78: 3964–3968.PubMedCrossRefGoogle Scholar
  9. (9).
    Chabre, M. 1985. Molecular mechanism of visual phototransduction in retinal rod cells. Ann. Rev. Biophys. Chem. 14: 331–360.CrossRefGoogle Scholar
  10. (10).
    Chen, Y.S., and Hubbel, W.L. 1978. Reactions of the sulfhydryl groups of membrane-bound bovine rhodopsin. Membr. Biochem. 1: 107–130.PubMedCrossRefGoogle Scholar
  11. (11).
    Corson, D.W.; Fein, A.; and Payne, R. 1984. Detection of an inositol 1, 4, 5-triphosphate-induced rise in intracellular free calcium with aequorin in Limulus ventral photoreceptors. Biol. Bull. 167: 524–525.Google Scholar
  12. (12).
    Downer, N.W., and Cone, R.A. 1985. Transient dichroism in photoreceptor membranes indicates that stable oligomers of rhodopsin do not form during excitation. Biophys. J. 47: 277–284.PubMedCrossRefGoogle Scholar
  13. (13).
    Dratz, E.A., and Hargrave, P.A. 1983. The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem. Sci. 8: 128–131.CrossRefGoogle Scholar
  14. (14).
    Emeis, D., and Hofmann, K.P. 1981. Shift in the relation between flash-induced metarhodopsin I and metarhodopsin II within the first 10% rhodopsin bleaching in bovine disc membranes. FEBS Lett. 143: 29–34.CrossRefGoogle Scholar
  15. (15).
    Emeis, D.; Kühn, H.; Reichert, J.; and Hofmann, K.P. 1982. Complex formation between metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes leads to a shift of the photoproduct equilibrium. FEBS Lett. 143: 29–34.PubMedCrossRefGoogle Scholar
  16. (16).
    Fatt, P. 1982. An extended Ca2+-hypothesis of visual transduction with a role for cGMP. FEBS Lett. 149: 159–166.PubMedCrossRefGoogle Scholar
  17. (17).
    Fein, A.; Payne, R.G.; Corson, D.W.; Berridge, M.J.; and Irvine, R.F. 1984. Photoreceptor excitation and adaptation by inositol 1, 4, 5,-triphosphate. Nature 311: 157–160.PubMedCrossRefGoogle Scholar
  18. (18).
    Fesenko, E.E.; Kolesnikov, S.S.; and Lyubarsky, A.L. 1985. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature 313: 310–313.PubMedCrossRefGoogle Scholar
  19. (19).
    Fleischman, D., and Denisevich, M. 1979. Guanylate cyclase in isolated bovine retinal rod axonemes. Biochemistry 18: 5060–5066.PubMedCrossRefGoogle Scholar
  20. (20).
    Francisco, J.A.; Mills, I.; García-Sáinz, J.A.; and Fain, J.N. 1983. Effect of pertussis toxin treatment on the metabolism of rat adipo-cytes. J. Biol. Chem. 258: 10938–10943.Google Scholar
  21. (21).
    Fung, B.K.K. 1983. Characterization of transducin from bovine retinal rod outer segments. J. Biol. Chem. 258: 10495–10502.PubMedGoogle Scholar
  22. (22).
    Fung, B.K.K.; Hurley, J.G.; and Stryer, L. 1981. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc. Natl. Acad. Sci. USA 78: 152–156.PubMedCrossRefGoogle Scholar
  23. (23).
    Ghalayini, A., and Anderson, R.E. 1984. Phosphatidylinositol 4, 5-biphosphate: Light-mediated breakdown in the vertebrate retina. Bio-chem. Biophys. Res. Commun. 124: 503–506.CrossRefGoogle Scholar
  24. (24).
    Gilman, A.G. 1984. G proteins and dual control of adenylate cyclase. Cell 36: 577–579.PubMedCrossRefGoogle Scholar
  25. (25).
    Godchaux, W., and Zimmerman, W.F. 1979. Membrane-dependent ffuanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments. J. Biol. Chem. 254: 7874–7884.PubMedGoogle Scholar
  26. (26).
    Goldberg, N.D.; Ames, A.; Gander, J.E.; and Walseth, T.F. 1983. Magnitude of increase in retinal cGMP metabolic flux determined by 18o incorporation into nucleotide a-phosphorvls corresponds with intensity of photic stimulation. J. Biol. Chem. 258: 9213–9219.PubMedGoogle Scholar
  27. (27).
    Hargrave, P.A.; Fong, S.L.; McDowell, J.H.; Mas, M.T.; Curtis, D.R.; Wang, J.K.; Juszcazak, E.; and Smith, D.P. 1980. The partial primary structure of bovine rhodopsin and its topography in the retinal rod cell disc membrane. Neurochem. Int. 1: 231–244.CrossRefGoogle Scholar
  28. (28).
    Heyman, R.; Ames, A.; Walseth, T.; Barad, M.; Graeff, R.; and Goldberg, N. 1985. Evidence that cGMP hydrolysis is causal in phototransduction. Biophys. J. 47: 101a.Google Scholar
  29. (29).
    Hofmann, K.P.; Emeis, D.; and Schnetkamp, P.M. 1983. Interplay between hydroxylamine, metarhodopsin II and GTP-binding protein in bovine photoreceptor membranes. Biochim. Biophys. Acta 725: 60–70.PubMedCrossRefGoogle Scholar
  30. (30).
    Hofmann, K.P.; Reichert, J.; and Emeis, D. 1984. Light-scattering signal of G-binding in ROS depends on osmolarity. Inv. Ophthal. Vis. Sci. 25(6): 156.Google Scholar
  31. (31).
    Hurley, J.B., and Stryer, L. 1982. Purification and characterization of the gamma regulatory subunit of the cyclic GMP phosphodiesterase from retinal rod outer segments. J. Biol. Chem. 257: 11094–11099.PubMedGoogle Scholar
  32. (32).
    Koch, K.W., and Kaupp, U.B. 1985. Cyclic GMP directly regulates a cation conductance in membranes of bovine rods by a cooperative mechanism. J. Biol. Chem. 260, in press.Google Scholar
  33. (33).
    Kretsinger, R.H. 1980. Structure and evolution of calcium-modulated proteins. CRC Crit. Rev. Biochem. 8: 119–174.PubMedCrossRefGoogle Scholar
  34. (34).
    Krishnan, N.; Fletcher, R.T.; Chader, G.J.; and Krishna, G. 1978. Characterization of guanylate cyclase of rod outer segments of the bovine retina. Biochim. Biophys. Acta 523: 506–515.PubMedGoogle Scholar
  35. (35).
    Kühn, H. 1978. Light-regulated binding of rhodopsin kinase and other proteins to cattle photoreceptor membranes. Biochemistry 17: 4389–4395.PubMedCrossRefGoogle Scholar
  36. (36).
    Kühn, H. 1980. Light-and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature 283: 587–589.PubMedCrossRefGoogle Scholar
  37. (37).
    Kühn, H. 1984. Interactions between photoexcited rhodopsin and light-activated enzymes in rods. In Progress in Retinal Research, eds. N. Osborne and Gf. Chader, vol. 3, pp. 123–156. Oxford: Pergamon Press.Google Scholar
  38. (38).
    Kühn, H.; Bennett, N.; Michel-Villaz, M.; and Chabre, M. 1981. Interactions between photoexcited rhodopsin and GTP-binding protein: kinetic and stoichiometric analysis from light-scattering changes. Proc. Natl. Acad. Sci. USA 78: 6873–6877.PubMedCrossRefGoogle Scholar
  39. (39).
    Kühn, H.; Hall, S.W.; and Wilden, U. 1984. Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett. 176: 473–478.PubMedCrossRefGoogle Scholar
  40. (40).
    Kühn, H., and Hargrave, P.A. 1981. Light-induced binding of GTPase to bovine photoreceptor membranes: Effects of limited proteolysis of the membranes. Biochem. 20: 2410–2417.CrossRefGoogle Scholar
  41. (41).
    Kühn, H.; Mommertz, O.; and Hargrave, P.A. 1982. Light-dependent conformational change at rhodopsin’s cytoplasmic surface detected by increased susceptibility to proteolysis. Biochim. Biophys. Acta 679: 95–100.CrossRefGoogle Scholar
  42. (42).
    Liebman, P.A., and Pugh, E.N., Jr. 1979. The control of phosphodiesterase in rod disc membranes: kinetics, possible mechanisms and significance for vision. Vision Res. 19: 375–380.PubMedCrossRefGoogle Scholar
  43. (43).
    Liebman, P.A., and Pugh, E.N., Jr. 1980. ATP mediates rapid reversal of cyclic GMP phosphodiesterase activation in visual receptor membranes. Nature 287: 734–736.PubMedCrossRefGoogle Scholar
  44. (44).
    Liebman, P.A., and Pugh, E.N., Jr. 1982. Gain, speed and sensitivity of GTP binding versus PDE activation in visual excitation. Vision Res. 23: 1475–1480.CrossRefGoogle Scholar
  45. (45).
    Liebman, P.A., and Sitaramayya, A. 1984. Role of G-protein/receptor interaction in amplified phosphodiesterase activation of retinal rods. Adv. Cyclic Nucl. Res. 17: 215–225.Google Scholar
  46. (46).
    Liebman, P.A.; Sitaramayya, A.; Parkes, J.H.; and Buzdygon, B. 1984. Mechanism of cGMP control in retinal rod outer segments. Trends Pharm. Sci. 5: 293–296.CrossRefGoogle Scholar
  47. (47).
    O’Tousa, J.; Baehr, W.; Martin, R.; Hirsh, J.; Pak, W.L.; and Applebury, M.L. 1985. The Drosophila ninaE gene encodes an opsin. Cell 40: 839–850.PubMedCrossRefGoogle Scholar
  48. (48).
    Pannbacker, R.G. 1973. Control of guanylate cyclase activity in the rod outer segment. Science 182: 1138–1140.PubMedCrossRefGoogle Scholar
  49. (49).
    Pappin, D.J.C.; Eliopoulos, E.; Brett, M.; and Findlay, J.B.C. 1984. A structural model for ovine rhodopsin. Intl. J. Biol. Macromol. 6: 73–76.CrossRefGoogle Scholar
  50. (50).
    Parkes, J.H., and Liebman, P.A. 1984. Metarhodopsin II is weakly bound to G-protein. Inv. Ophthal. Vis. Res. 25(9): 156.Google Scholar
  51. (51).
    Paulsen, R., and Bentrop, J. 1984. Activation of rhodopsin phosphory-lation is triggered by the lumirhodopsin-metarhodopsin I transition. Nature 302: 417–419.CrossRefGoogle Scholar
  52. (52).
    Paulsen, R., and Bentrop, J. 1984. Reversible phosphorylation of opsin induced by irradiation of blowfly retinae. J. Comp. Physiol. A 155: 39–45.CrossRefGoogle Scholar
  53. (53).
    Payne, R.; Fein, A.; and Corson, D.W. 1984. A rise in intracellular calcium is necessary and perhaps sufficient for photoreceptor excitation and adaptation by inositol 1, 4, 5-triphosphate. Biol. Bull. 167: 531.Google Scholar
  54. (54).
    Pfister, C.; Kühn, H.; and Chabre, M. 1983. Complex formation between photoexcited rhodopsin and GTP-binding protein influences the post metarhodopsin II decay and the phosphorylation rate of rhodopsin m frog rods. Eur. J. Biochem. 136: 489–499.PubMedCrossRefGoogle Scholar
  55. (55).
    Robinson, P.R.; Kawamura, S.; Abramson, B.; and Bownds, M.D. 1980. Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes. J. Gen. Physiol. 76: 631–645.PubMedCrossRefGoogle Scholar
  56. (56).
    Roof, D.J., and Heuser, J.E. 1982. Surfaces of rod photoreceptor disk membranes; integral membrane components. J. Cell Biol. 95: 487–500.PubMedCrossRefGoogle Scholar
  57. (57).
    Saibil, H.R. 1982. A membrane-eytoskeleton network in squid photoreceptor microvilli. J. Molec. Biol. 158: 435–456.PubMedCrossRefGoogle Scholar
  58. (58).
    Saibil, H.R. 1984. A light stimulated increase of cyclic GMP in squid photoreceptors. FEBS Lett. 168: 213–216.PubMedCrossRefGoogle Scholar
  59. (59).
    Saibil, H.R., and Michel-Villaz, M. 1984. Squid rhodopsin and GTP-binding protein cross-react with bovine photoreceptor enzymes. Proc. Natl. Acad. Sci. USA 81: 5111–5115.PubMedCrossRefGoogle Scholar
  60. (60).
    Schmidt, S.Y. 1983. Phosphatidylinositol synthesis and phosphorylation are enhanced by light in rat retinas. J. Biol. Chem. 258: 6863–6868.PubMedGoogle Scholar
  61. (61).
    Shinozawa, T., and Bitensky, M.W. 1981. Purification and characterization of photoreceptor light-activated guanosine triphosphatase. Biochemistry 20: 7068–7074.PubMedCrossRefGoogle Scholar
  62. (62).
    Sitaramayya, A., and Liebman, P.A. 1983. Phosphorylation of rhodopsin and quenching of cyclic GMP phosphodiesterase activation by ATP at weak bleaches. J. Biol. Chem. 258: 12106–12109.PubMedGoogle Scholar
  63. (63).
    Sitaramayya, A.; Parkes, J.H.; Harkness, J.; and Liebman, P.A. 1985. Kinetic studies suggest light activated cyclic GMP phosphodiesterase is a complex with G-protein subunit. J. Biol. Chem. 260, in press.Google Scholar
  64. (64).
    Stoeckenius, W., and Bogomolni, R.A.A. 1982. Bacteriorhodopsin and related pigments of halobacteria. Ann. Rev. Biochem. 51: 587–616.PubMedCrossRefGoogle Scholar
  65. (65).
    Tyminski, P.N., and O’Brien, D.F. 1984. Rod outer segment phosphodi-esterase binding and activation in reconstituted membranes. Biochemistry 23: 3986–3993.PubMedCrossRefGoogle Scholar
  66. (66).
    Uchida, S.; Wheeler, G.L.; Yamazaki, A.; and Bitensky, M.W. 1981. A GTP-ppotein activator of phosphodiesterase which forms in response to bleached rhodopsin. J. Cyclic Nucl. Res. 7: 95–104.Google Scholar
  67. (67).
    Vandenberg, C.A., and Montai, M. 1984. Light-regulated biochemical events in invertebrate photoreceptors. Biochemistry 23: 2339–2352.PubMedCrossRefGoogle Scholar
  68. (68).
    Vuong, T.M.; Chabre, M.; and Stryer, L. 1984. Millisecond activation of transducin in the cyclic nucleotide cascade. Nature 311: 659–661.PubMedCrossRefGoogle Scholar
  69. (69).
    Waloga, G., and Anderson, R.E. 1985. Effects of inositol-1, 4, 5-triphosphate injections into salamander rods. Biochem. Biophys. Res. Commun. 126: 59–62.PubMedCrossRefGoogle Scholar
  70. (70).
    Walseth, T.F.; Yuen, P.S.T.; Panter. S.S.; and Goldberg, N.D. 1985. Identification of a cGMP binding/cGMP phosphodiesterase (cGMP BP/PDE) in human platelets by direct photoaffinity labeling with [32]P-cGMP. Fed. Proc. 44: 728.Google Scholar
  71. (71).
    Wilden, U., and Kühn, H. 1982. Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochemistry 21: 3014–3022.PubMedCrossRefGoogle Scholar
  72. (72).
    Yamazaki, A.: Bartucca, F.; Ting, A.; and Bitensky, M.W. 1982. Reciprocal effects of an inhibitory factor on catalytic activity and noncatalytic cGMP binding sites of rod phosphodiesterase. Proc. Natl. Acad. Sci. USA 79: 3702–3706.PubMedCrossRefGoogle Scholar
  73. (73).
    Yamazaki, A.; Stein, P.J.; Chernoff, N.; and Bitensky, M. 1983. Activation mechanism of rod outer segment cyclic GMP phosphodiesterase. Release of inhibitor by the GTP/GDP-binding protein. J. Biol. Chem. 258: 8188–8194.PubMedGoogle Scholar
  74. (74).
    Yee, R., and Liebman, P.A. 1978. Light-activated phosphodiesterase of the rod outer segments. Kinetics and parameters of activation and deactivation. J. Biol. Chem. 253: 8902–8909.PubMedGoogle Scholar
  75. (75).
    Yoshioka, T.; Inoue, H.; Takagi, M.; Hayashi, F.; and Amakawa, T. 1983. The effect of isobutylmethylxanthine on the photoresponse and phosphorylation of phosphatidylinositol in octopus retina. Biochim. Biophys. Acta 744: 50–55.CrossRefGoogle Scholar
  76. (76).
    Zuckerman, R.; Buzdygon, B.; Philp, N.; Liebman, P.; and Sitaramayya, A. 1985. Arrestin: An ATP/ADP exchange protein that regulates cGMP phosphodiesterase activity in retinal rod disk membranes (RDM). Biophys. J. 47: 37a.CrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • M. L. Applebury
  • P. A. Liebman
  • M. Chabre
  • H. Prinz
  • J. B. C. Findlay
  • H. R. Saibil
  • N. D. Goldberg
  • A. Schleicher
  • U. B. Kaupp
  • L. Stryer
  • H. Kühn

There are no affiliations available

Personalised recommendations