Skip to main content

Quantitative Models of Phototransduction

  • Conference paper
The Molecular Mechanism of Photoreception

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

  • 66 Accesses

Abstract

Two main subjects of photoreceptor physiology are discussed: a) the properties of the light-sensitive channel, and b) the kinetics of the intervening events between photoisomerization and electrical response. The ionic nature of the photocurrent is discussed and evidence that ions other than Na+ also contribute light-sensitive current in rods is reviewed. Both electrical measurements and determinations with radioactive tracers indicate that K+ and divalent cations permeate through the light-sensitive channel, thus contributing dark current. It is suggested that the light-sensitive channel may exist in three different conductive states which are controlled by both divalent cations and cyclic nucleotides. The cascade model of phototransduction is briefly reviewed and compared with an alternative scheme. The role of cyclic nucleotide metabolism in the phototransductive process is evaluated on the basis of electrical measurements carried out in the presence of phosphodiesterase inhibitors. It is suggested that the hydrolytic activity of phosphodiesterase may be involved in controlling the kinetics of photoresponses by accelerating the flux of cGMP, which in turn may affect all the rate constants of the multistage model. Ca2+ extrusion from the visual cell is considered; we propose that this process may play a role in some of the phenomena associated with light adaptation and be responsible for the recovery of responsiveness during Tight saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attwell, J., and Wilson, M. 1980. Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods. J. Physiol. 309: 287–316.

    PubMed  CAS  Google Scholar 

  2. Bader, C.R.; Bertrand, D.; and Schwartz, E.A. 1982. Voltage-activated and calcium-activated currents studied in solitary rod inner segements from the salamander retina. J. Physiol. 331: 253–284.

    PubMed  CAS  Google Scholar 

  3. Bader, C.R.; MacLeish, P.R.; and Schwartz, E.A. 1979. A voltageclamp study of the light response in solitary rods of the tiger salamander. J. Physiol. 296: 1–26.

    PubMed  CAS  Google Scholar 

  4. Bastian, B.L., and Fain, G.L. 1982. The effect of sodium replacement on the responses of the toad rods. J. Physiol. 330: 575–591.

    Google Scholar 

  5. Baylor, D.A., and Hodgkin, A.L. 1973. Detection and resolution of visual stimuli by turtle photoreceptors. J. Physiol. 234: 163–198.

    PubMed  CAS  Google Scholar 

  6. Baylor, D.A., and Hodgkin, A.L. 1974. Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol. 242: 729–758.

    PubMed  CAS  Google Scholar 

  7. Baylor, D.A.; Hodgkin, A.L.; and Lamb, T.D. 1974. Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol. 242: 759–791.

    PubMed  CAS  Google Scholar 

  8. Baylor, D.A.; Lamb, T.D.; and Yau, K.-W. 1979. The membrane current of single rod outer segments. J. Physiol. 288: 589–611.

    PubMed  CAS  Google Scholar 

  9. Baylor, D.A.; Matthews, G.; and Nunn, B. 1984. Location and function of voltage-sensitive conductances in retinal rods of the salamander Ambystoma tigrinum. J. Physiol. 354: 203–223.

    PubMed  CAS  Google Scholar 

  10. Baylor, D.A.; Nunn, B.J.; and Schnapf, J.L. 1984. The photocurrent, noise and sprectral sensitivity of rods of the monkey Macaca fasciculari. J. Physiol. 357: 575–607.

    PubMed  CAS  Google Scholar 

  11. Borsellino, A., and Fuortes, M.G.F. 1968. Responses to single photons in visual cells of Limulus. J. Physiol. 196: 507–539.

    PubMed  CAS  Google Scholar 

  12. Brown, J.E., and Pinto, L.H. 1974. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J. Physiol. 236: 575–591.

    PubMed  CAS  Google Scholar 

  13. Capovilla, M.; Caretta, A.; Cervetto, L.; and Torre, V. 1983. Ionic movements through light-sensitive channels of toad rods. J. Physiol. 343: 295–310.

    PubMed  CAS  Google Scholar 

  14. Capovilla, M.; Cervetto, L.; and Torre, V. 1980. Effects of changing the external potassium and chloride concentrations on the photoresponses of Bufo bufo rods. J. Physiol. 307: 529–551.

    PubMed  CAS  Google Scholar 

  15. Capovilla, M.; Cervetto, L.; and Torre, V. 1980. The sodium current underlying responses to light of rods. J. Physiol. 317: 223–242.

    Google Scholar 

  16. Capovilla, M.; Cervetto, L.; and Torre, V. 1982. Antagonism between steady and phosphodiesterase inhibitors on the kinetics of rod photoresponses. Proc. Natl. Acad. Sci. USA 79: 6698–6702.

    Article  PubMed  CAS  Google Scholar 

  17. Capovilla, M.; Cervetto, L.; and Torre, V. 1983. The effect of phosphodiesterase inhibitors on the electrical activity of toad rods. J. Physiol. 343: 277–294.

    PubMed  CAS  Google Scholar 

  18. Cavaggioni, A.; Sorbi, R.T.; and Turrini, S. 1973. Efflux of potassium from isolated rod outer segments: a photic effect. J. Physiol. 232: 609–620.

    PubMed  CAS  Google Scholar 

  19. Cervetto, L. 1973. Influence of sodium, potassium and chloride ions on the intracellular responses of turtle photoreceptor. Nature 241: 401–403.

    Article  PubMed  CAS  Google Scholar 

  20. Cervetto, L.; Pasino, E.; and Torre, V. 1977. Electrical responses of rods in the retina of Bufo marinus. J. Physiol. 267: 17–51.

    PubMed  CAS  Google Scholar 

  21. Cervetto, L.; Torre, V.; Pasino, E.; and Capovilla, M. 1984. Recovery from desensitization and saturation in toad rods. In Photoreceptors, eds. A. Borsellino and L. Cervetto. New York: Plenum Press.

    Google Scholar 

  22. Cone, R.A. 1973. The internal transmitter model for visual excitation: some quantitative implications. In Biochemistry and Physiology of Visual Pigments, ed. H. Langer, pp. 275–282. Berlin, New York: Springer-Verlag.

    Google Scholar 

  23. Cook, R.; Hodgkin, A.L.; McNaughton, P.A.; and Nunn, B.J. 1984. Rapid change of solutions bathing a rod outer segment. J. Physiol. 357: 2p.

    Google Scholar 

  24. Detwiler, P.B.; Conner, J.D.; and Bodoia, R.D. 1982. Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature 300: 59–61.

    Article  PubMed  CAS  Google Scholar 

  25. Detwiler, P.B.; Hodgkin, A.L.; and McNaughton, P.A. 1980. Temporal and spatial characteristics of the voltage response of rods in the retina of the snapping turtle. J. Physiol. 300: 213–250.

    PubMed  CAS  Google Scholar 

  26. Di Polo, R., and Beaugé, L. 1983. The calcium pump and sodium-calcium exchange in squid axons. Ann. Rev. Physiol. 45: 313–324.

    Article  Google Scholar 

  27. Fain, G.L. 1976. Sensitivity of toad rods: dependence on wavelength and background illumination. J. Physiol. 261: 71–101.

    PubMed  CAS  Google Scholar 

  28. Fain, G.L., and Lisman, J.E. 1981. Membrane conductances of photoreceptors. Prog. Biophys. Molec. Biol. 37: 91–147.

    Article  CAS  Google Scholar 

  29. Fain, G.L.; Quandt, F.H.; Bastian, B.L.; and Gershenfeld, H.M. 1978. Contribution of a caesium-sensitive conductance increase to the rod photoresponse. Nature 272: 467–469.

    Article  CAS  Google Scholar 

  30. Fain, G.L.; Quandt, F.H.; and Gershenfeld, H.M. 1977. Calciumdependent regenerative responses in rods. Nature 269: 707–710.

    Article  PubMed  CAS  Google Scholar 

  31. Fuortes, M.G.F., and Hodgkin, A.L. 1964. Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. 172: 239–263.

    PubMed  CAS  Google Scholar 

  32. Glynn, I.M., and Karlish, J.D. 1975. The sodium pump. Ann. Rev. Physiol. 37: 13–53.

    Article  CAS  Google Scholar 

  33. Gold, G.H. and Korenbrot, J.I. 1980. Light-induced calcium release by intact retinal rods. Proc. Natl. Acad. Sci. USA 278: 5557–5561.

    Article  Google Scholar 

  34. Hagins, W.A.; Penn, R.D.; and Yoshikami, S. 1970. Dark current and photocurrent in retinal rods. Biophys. J. 10: 380–412.

    Article  PubMed  CAS  Google Scholar 

  35. Hille, B. 1973. Potassium channels in myelinated nerve: selective permeability to small cations. J. Gen. Physiol. 61: 669–686.

    Article  PubMed  CAS  Google Scholar 

  36. Hodgkin, A.L., and Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. 148: 127–160.

    PubMed  CAS  Google Scholar 

  37. Hodgkin, A.L., and Keynes, R.D. 1955. The potassium permeability of a giant nerve. J. Physiol. 128: 61–88.

    PubMed  CAS  Google Scholar 

  38. Hodgkin, A.L.; McNaughton, P.A.; and Nunn, B.J. 1985. The ionic selectivity of light-sensitive channels in retinal rods from Bufo marinus. J. Physiol. 358: 447–468.

    PubMed  CAS  Google Scholar 

  39. Hodgkin, A.L.; McNaughton, P.A.; Nunn, B.J.; and Yau, K.-W. 1984. Effect of ions on retinal rods from Bufo marinus. J. Physiol. 350: 649–680.

    PubMed  CAS  Google Scholar 

  40. Horowicz, P.; Gage, P.W.; and Eisenberg, R.S. 1968. The role of the electrochemical gradient in determining potassium fluxes in frog striated muscle. J. Gen. Physiol. 72: 405–442.

    Google Scholar 

  41. Lamb, T.D. 1984. Effects of temperature changes on toad rod photocurrents. J. Physiol. 346: 557–578.

    PubMed  CAS  Google Scholar 

  42. Lamb, T.D. 1984. Electrical response of photoreceptors. In Recent Advances in Physiology, vol. 10, pp. 29–66. New York: Churchill Livingstone.

    Google Scholar 

  43. Lamb, T.D.; McNaughton, P.A.; and Yau, K.-W. 1981. Longitudinal spread of activation and background desensitization in toad rod outer segments. J. Physiol. 319: 463–496.

    PubMed  CAS  Google Scholar 

  44. Owen, W.G., and Torre, V. 1983. High-pass filtering of small signals by retinal rods: ionic studies. Biophys. J. 41: 325–340.

    Article  PubMed  CAS  Google Scholar 

  45. Payne, R., and Howard, J. 1981. Responses of an insect photoreceptor: a simple log-normal model. Nature 290: 415–416.

    Article  Google Scholar 

  46. Penn, R.D., and Hagins, W.A. 1972. Kinetics of the photocurrent of retinal rods. Biophys. J. 12: 1073–1094.

    Article  PubMed  CAS  Google Scholar 

  47. Robinson, J.D., and Falshner, M.S. 1979. The (Na+-K+) activated ATPase. Enzymatic and transport properties. Biochim. Biophys. Acta. 549: 145–176.

    CAS  Google Scholar 

  48. Robinson, W.E.; Kawamura, K.S.; Abramson, B.; and Bownds, D. 1980. Control of the cyclic GMP phosphodiesterase of frog photoreceptor membranes. J. Gen. Physiol. 76: 631–645.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas, R.C. 1972. Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52: 563–594.

    PubMed  CAS  Google Scholar 

  50. Torre, V. 1982. The contribution of the electrogenic sodium-potassium pump to the electrical activity of toad rods. J. Physiol. 333: 315–341.

    PubMed  CAS  Google Scholar 

  51. Torre, V., and Owen, W.G. 1983. High-pass filtering of small signals by the rod networks in the retina of the toad, Bufo marinus. Biophys. J. 41: 305–324.

    Article  PubMed  CAS  Google Scholar 

  52. Torre, V.; Pasino, E.; Capovilla, M.; and Cervetto, L. 1981. Rod photoresponses in the absence of external sodium in retinae treated with phosphodiesterase inhibitors. Exp. Brain Res. 44: 427–430.

    Article  PubMed  CAS  Google Scholar 

  53. Yau, K.-W.; McNaughton, P.A.; and Hodgkin, A.L. 1981. Effect of ions on the light-sensitive current in retinal rods. Nature 292: 502–505.

    Article  PubMed  CAS  Google Scholar 

  54. Yau, K.W., and Nakatani, K. 1984. Cation selectivity of light sensitive conductance in retinal rods. Nature 309: 352–354.

    Article  PubMed  CAS  Google Scholar 

  55. Yau, K.-W., and Nakatani, K. 1984. Electrogenic sodium-calcium exchange in retinal rod outer segment. Nature 311: 661–663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Borsellino, A., Cervetto, L., Torre, V. (1986). Quantitative Models of Phototransduction. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics