Skip to main content

Photoreceptor Adaptation — Vertebrates

  • Conference paper
The Molecular Mechanism of Photoreception

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

Abstract

It seems that much of the adaptational behavior of the overall visual system may be explicable in terms of properties of the rod and cone photoreceptors. This paper reviews the properties of vertebrate photoreceptors within the framework of the performance of the visual system and attempts to explore those aspects of photoreceptor adaptation which may be important at the behavioral level. For convenience it is useful to consider separately the phenomena of background adaptation and bleaching adaptation, as quite different mechanisms appear to be involved. Background adaptation involves desensitization and acceleration of the response to light, probably as a result of modifications to the transduction process at the level of biochemical reactions. During bleaching adaptation, which follows exposure to extremely intense light, the rod photoreceptors appear to experience something equivalent to the arrival of a steam of photons, and it is conceivable that the adaptational effects are essentially the same as if a real light had been absorbed. The equivalent light may originate from reverse reactions in the chain of steps involved in the removal of activated rhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilar, M., and Stiles, W.S. 1954. Saturation of the rod mechanism at high levels of stimulation. Optica Acta 1: 59–65.

    Article  Google Scholar 

  2. Alpern, M. 1971. Rhodopsin kinetics in the human eye. J. Physiol. 217: 447–471.

    CAS  PubMed  Google Scholar 

  3. Alpern, M.; Rushton, W.A.H.; and Torii, S. 1970. The attenuation of rod signals by bleachings. J. Physiol. 207: 449–461.

    CAS  PubMed  Google Scholar 

  4. Barlow, H.B. 1957. Increment thresholds at low intensities considered as signal noise discriminations. J. Physiol. 136: 469–488.

    CAS  PubMed  Google Scholar 

  5. Barlow, H.B. 1962. Measurements of the quantum efficiency of discrimination in human scotopic vision. J. Physiol. 160: 169–188.

    CAS  PubMed  Google Scholar 

  6. Barlow, H.B. 1964. Dark-adaptation: a new hypothesis. Vision Res. 4: 47–58.

    Article  CAS  PubMed  Google Scholar 

  7. Barlow, H.B. 1972. Dark and light adaptation: Psychophysics. In Handbook of Sensory Physiology, eds. D. Jameson and L.M. Hurvich, vol. VII-4, pp. 1–28. Berlin: Springer-Verlag.

    Google Scholar 

  8. Bastian, B.L., and Fain, G.L. 1979. Light-adaptation in toad rods: requirement for an internal messenger which is not calcium. J. Physiol. 242: 729–758.

    Google Scholar 

  9. Baylor, D.A., and Hodgkin, A.L. 1974. Changes in time scale and sensitivity in turtle photoreceptors. J. Physiol. 242: 729–758.

    CAS  PubMed  Google Scholar 

  10. Baylor, D.A.; Hodgkin, A.L.; and Lamb, T.D. 1974. Reconstruction of the electrical responses of turtle cones to flashes and steps of light. J. Physiol. 242: 759–791.

    CAS  PubMed  Google Scholar 

  11. Baylor, D.A.; Matthews, G.; and Yau, K.-W. 1980. Two components of electrical dark noise in retinal rod outer segments. J. Physiol. 309: 591–621.

    CAS  PubMed  Google Scholar 

  12. Baylor, D.A.; Matthews, G.; and Yau, K.-W. 1983. Temperature effects on the membrane current of retinal rods of the toad. J. Physiol. 337: 723–734.

    CAS  PubMed  Google Scholar 

  13. Baylor, D.A.; Nunn, B.J.; and Schnapf, J. 1984. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol. 357: 575–607.

    CAS  PubMed  Google Scholar 

  14. Bonds, A.B., and MacLeod, D.I.A. 1974. The bleaching and regeneration of rhodopsin in the cat. J. Physiol. 242: 237–253.

    CAS  PubMed  Google Scholar 

  15. Clack, J.W., and Pepperberg, D.R. 1982. Desensitization of skate photoreceptors by bleaching and background light. J. Gen. Physiol. 80: 863–883.

    Article  CAS  PubMed  Google Scholar 

  16. Craik, K.J.W. 1938. The effect of adaptation on differential brightness discrimination. J. Physiol. 92: 406–421.

    CAS  PubMed  Google Scholar 

  17. Crawford, B.H. 1947. Visual adaptation in relation to brief conditioning stimuli. Proc. Roy. Soc. Lond. B 134: 238–302.

    Article  Google Scholar 

  18. Donner, K.O., and Hemila, S. 1978. Excitation and adaptation in the vertebrate rod photoreceptor. Med. Biol. 56: 52–63.

    CAS  PubMed  Google Scholar 

  19. Enroth-Cugell, C., and Shapley, R.M. 1973. Flux, not retinal illumination, is what cat retinal ganglion cells really care about. J. Physiol. 233: 311–326.

    CAS  PubMed  Google Scholar 

  20. Fain, G.L. 1976. Sensitivity of toad rods: dependence on wave-length and background illumination. J. Physiol. 261: 71–101.

    CAS  PubMed  Google Scholar 

  21. Fain, G.L.; Granda, A.M.; and Maxwell, J.H. 1977. The voltage signal of photoreceptors at visual threshold. Nature 265: 181–183.

    Article  CAS  PubMed  Google Scholar 

  22. Grabowski, S.R.; Pinto, L.H.; and Pak, W.L. 1972. Adaptation in retinal rods of axolotl: intracellular recordings. Science 176: 1240–1243.

    Article  CAS  PubMed  Google Scholar 

  23. Green, D.G.; Dowling, J.E.; Siegel, I.M.; and Ripps, H. 1975. Retinal mechanisms of visual adaptation in the skate. J. Gen. Physiol. 65: 483–502.

    Article  CAS  PubMed  Google Scholar 

  24. Hecht, S.; Haig, C.; and Chase, A.M. 1937. The influence of light-adaptation on subsequent dark adaptation of the eye. J. Gen. Physiol. 20: 831–850.

    Article  CAS  PubMed  Google Scholar 

  25. Kelly, D.H. 1971. Theory of flicker and transient responses. I. Uniform fields. J. Opt. Soc. Am. 61: 537–546.

    Article  CAS  PubMed  Google Scholar 

  26. Kleinschmidt, J., and Dowling, J.E. 1975. Intracellular recordings from gecko photoreceptors during light and dark adaptation. J. Gen. Physiol. 66: 617–648.

    Article  CAS  PubMed  Google Scholar 

  27. Lamb, T.D. 1980. Spontaneous quantal events induced in toad rods by pigment bleaching. Nature 287: 349–351.

    Article  CAS  PubMed  Google Scholar 

  28. Lamb, T.D. 1981. The involvement of rod photoreceptors in dark adaptation. Vision Res. 21: 1773–1782.

    Article  CAS  PubMed  Google Scholar 

  29. Lamb, T.D.; McNaughton, P.A.; and Yau, K.-W. 1981. Spatial spread of activation and background desensitization in toad rod outer segments. J. Physiol. 319: 463–496.

    CAS  PubMed  Google Scholar 

  30. Lamb, T.D., and Simon, E.J. 1977. Analysis of electrical noise in turtle cones. J. Physiol. 272: 435–468.

    CAS  PubMed  Google Scholar 

  31. MacLeod, D.I.A. 1978. Visual sensitivity. Ann. Rev. Psychol. 29: 613–645.

    Article  CAS  Google Scholar 

  32. Nordby, K.; Stabell, B.; and Stabell, V. 1984. Dark-adaptation of the human rod system. Vision Res. 24: 841–849.

    Article  CAS  PubMed  Google Scholar 

  33. Normann, R.A., and Perlman, I. 1979. The effects of background illumination on the photoresponses of red and green cones. J. Physiol. 286: 509–524.

    CAS  PubMed  Google Scholar 

  34. Nunn, B.J., and Baylor, D.A. 1983. Visual transduction in single photoreceptors of the monkey Macaca fascicularis. In Colour Vision, Physiology and Psychophysics, eds. J.D. Mollon and L.T. Sharpe, pp. 1–11. London: Academic.

    Google Scholar 

  35. Pepperberg, D.R.; Brown, P.K.; Lurie, M.; and Dowling, J.E. 1978. Visual pigment and photoreceptor sensitivity in the isolated skate retina. J. Gen. Physiol. 71: 369–396.

    Article  CAS  PubMed  Google Scholar 

  36. Perlman, J.I.; Nodes, B.R.; and Pepperberg, D.R. 1982. Utilization of retinoids in the bullfrog retina. J. Gen. Physiol. 80: 885–913.

    Article  CAS  PubMed  Google Scholar 

  37. Paulsen, R., and Bentrop, J. 1983. Activation of rhodopsin phosphorylation is triggered by the lumirhodopsin-metarhodopsin I transition. Nature 302: 417–419.

    Article  CAS  PubMed  Google Scholar 

  38. Pugh, E.N., Jr. 1975. Rushton’s paradox: rod adaptation after flash photolysis. J. Physiol. 248: 413–431.

    CAS  PubMed  Google Scholar 

  39. Rose, A. 1948. The sensitivity performance of the human eye on an absolute scale. J. Opt. Soc. Am. 38: 196–208.

    Article  CAS  PubMed  Google Scholar 

  40. Rushton, W.A.H. 1965. The Ferrier Lecture 1962. Visual adaptation. Proc. Roy. Soc. Lond. B 162: 20–46.

    Article  CAS  Google Scholar 

  41. Shapley, R., and Enroth-Cugell, C. 1984. Visual adaptation and retinal gain controls. In Progress in Retinal Research, eds. N.N. Osborne and G.J. Chader, vol. 3, pp. 263–346. Oxford: Pergamon.

    Google Scholar 

  42. Stiles, W.S., and Crawford, B.H. 1932. Equivalent adaptation levels in localized retinal areas. In Report of a Joint Discussion on Vision, pp. 194–211. Physical Society of London. Cambridge: Cambridge University Press. (Reprinted in Stiles, W.S. 1978. Mechanisms of Colour Vision. London: Academic.)

    Google Scholar 

  43. Tranchina, D.; Gordon, J.; and Shapley, R.M. 1984. Retinal light adaptation — evidence for a feedback mechanism. Nature 310: 314–316.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Lamb, T.D. (1986). Photoreceptor Adaptation — Vertebrates. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics