Calcium and Light Adaptation in Invertebrate Photoreceptors

  • J. E. Brown
Conference paper
Part of the Dahlem Workshop Reports book series (DAHLEM, volume 34)

Abstract

A light-induced increase in the concentration of intracellular calcium ions has been proposed to be a step in the cascade of reactions mediating light adaptation in invertebrate photoreceptors. The physiological and anatomical evidence consistent with that proposal is reviewed.

Keywords

Magnesium Ethyl Phenol Lithium Retina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Bader, C.R.; Baumann, F.; and Bertrand, D. 1976. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera). J. Gen. Physiol. 67: 475–491.PubMedCrossRefGoogle Scholar
  2. (2).
    Baumann, F. 1968. Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light. J. Gen. Physiol. 52: 855–875.PubMedCrossRefGoogle Scholar
  3. (3).
    Bolsover, S.R., and Brown, J.E. 1982. Calcium injections increase sensitivity in calcium depleted Limulus ventral photoreceptor cells. Biol. Bull. 163: 394–395.Google Scholar
  4. (4).
    Bolsover, S.R., and Brown, J.E. 1982. Light adaptation of invertebrate photoreceptors: influence of intraeellular pH buffering capacity. J. Physiol. 330: 297–305.PubMedGoogle Scholar
  5. (5).
    Bolsover, S.R., and Brown, J.E. 1985. Calcium ion, an intracellular messenger of light adaptation, also participates in excitation of Limulus ventral photoreceptor cells. J. Physiol. 364: 381–393.PubMedGoogle Scholar
  6. (6).
    Bolsover, S.R.; Brown, J.E.; and Goldsmith, T.G. 1986. Intracellular pH of Limulus ventral photoreceptor cells: measurement with phenol red. In Optical Methods in Cell Physiology, eds. P. DeWeer and B.M. Salzberg. New York: J. Wiley and Sons.Google Scholar
  7. (7).
    Brown, H.M. 1984. Intracellular changes of H+ and Ca++ in Balanus photoreceptors. In Photoreceptors, eds. A. Borsellino and L. Cervetto. NATO ASI Series: A. Life Sciences 75: 99-118.Google Scholar
  8. (8).
    Brown, H.M.; Hagiwara, S.; Koike, H.; and Meech, R.W. 1970. Membrane properties of a barnacle photoreceptor examined by the voltageclamp technique. J. Physiol. 208: 385–413.PubMedGoogle Scholar
  9. (9).
    Brown, H.M., and Meech, R.W. 1976. Intracellular pH and light adaptation in barnacle photoreceptor. J. Physiol. 263: 218P.PubMedGoogle Scholar
  10. (10).
    Brown, H.M., and Meech, R.W. 1979. Light-induced changes of internal pH in a barnacle photoreceptor and the effect of internal pH on the receptor potential. J. Physiol. 297: 73–94.PubMedGoogle Scholar
  11. (11).
    Brown, J.E., and Blinks, J.R. 1974. Changes in intracellular free calcium concentration during illumination of invertebrate photoreceptors. Detection with aequorin. J. Gen. Physiol. 64: 643–665.PubMedCrossRefGoogle Scholar
  12. (12).
    Brown, J.E.; Brown, P.K.; and Pinto, L.H. 1977. Detection of light-induced changes of intracellular ionized calcium concentration in Limulus ventral photoreceptors using arsenazo III. J. Physiol. 267: 299–320.PubMedGoogle Scholar
  13. (13).
    Brown, J.E., and Lisman, J.E. 1975. Intracellular Ca modulates sensitivity and time scale in Limulus ventral photoreceptors. Nature 258: 252–254.PubMedCrossRefGoogle Scholar
  14. (14).
    Brown, J.E., and Mote, M.I. 1974. Ionic dependence of reversal voltage of the light response in Limulus ventral photoreceptors. J. Gen. Physiol. 63: 337–350.PubMedCrossRefGoogle Scholar
  15. (15).
    Brown, J.E., and Rubin, L.J. 1985. A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in Limulus photoreceptors. Biochem. Biophys. Res. Comm. 125: 1137–1142.CrossRefGoogle Scholar
  16. (16).
    Brown, J.E.; Rubin, L.J.; Ghalayini, A.J.; Tarver, A.P.; Irvine, R.F.; Berridge, M.J.; and Anderson, R.E. 1984. Myoinositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature 311: 160–163.PubMedCrossRefGoogle Scholar
  17. (17).
    Coles, J.A., and Brown, J.E. 1976. Effects of increased intracellular pH-buffering capacity on the light response of Limulus ventral photoreceptor. Biochim. Biophys. Acta 436: 140–153.PubMedCrossRefGoogle Scholar
  18. (18).
    Coles, J.A., and Rick, R. 1985. An electron microprobe analysis of photoreceptors and outer pigment cells in the retina of the honeybee drone. 156: 213–222.Google Scholar
  19. (19).
    Corson, D.W.; Fein, A.; and Payne, R. 1984. Detection of an inositol 1, 4, 5-trisphosphate-induced rise in intracellular free calcium with aequorin in Limulus ventral photoreceptors. Biol. Bull. 167: 524–525 (Abstract).Google Scholar
  20. (20).
    Fein, A., and Charlton, J.S. 1975. Local adaptation in the ventral photoreceptors of Limulus. J. Gen. Physiol. 66: 823–836.PubMedCrossRefGoogle Scholar
  21. (21).
    Fein, A., and Charlton, J.S. 1977a. A quantitative comparison of the effects of intracellular calcium injection and light adaptation on the photoresponse of Limulus ventral photoreceptors. J. Gen. Physiol. 70: 591–600.PubMedCrossRefGoogle Scholar
  22. (22).
    Fein, A., and Charlton, J.S. 1977b. Increased intracellular sodium mimics some but not all aspects of photoreceptor adaptation in the ventral eye of Limulus. J. Gen. Physiol. 70: 601–620.PubMedCrossRefGoogle Scholar
  23. (23).
    Fein, A., and Charlton, J.S. 1978. A quantitative comparison of the time-course of sensitivity changes produced by calcium injection and light adaptation in Limulus ventral photoreceptors. Biophys. J. 22: 105–113.PubMedCrossRefGoogle Scholar
  24. (24).
    Fein, A., and Lisman, J.E. 1975. Localized desensitization of Limulus photoreceptors produced by light or intracellular calcium ion injection. Science 187: 1094–1096.PubMedCrossRefGoogle Scholar
  25. (25).
    Fein, A.; Payne, R.; Corson, D.W.; Berridge, M.J.; and Irvine, R.F. 1984. Photoreceptor excitation and adaptation by inositol 1, 4, 5-trisphosphate. Nature 311: 157–160.PubMedCrossRefGoogle Scholar
  26. (26).
    Fioravanti, R., and Fuortes, M.G.F. 1972. Analysis of responses in visual cells of the leech. J. Physiol. 227: 173–194.PubMedGoogle Scholar
  27. (27).
    Fulpius, B., and Baumann, F. 1969. Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells. J. Gen. Physiol. 53: 541–561.PubMedCrossRefGoogle Scholar
  28. (28).
    Fuortes, M.G.F., and Hodgkin, A.L. 1964. Changes in time scale and sensitivity in the ommatidia of Limulus. J. Physiol. 172: 239–263.PubMedGoogle Scholar
  29. (29).
    Hanani, H., and Hillman, P. 1976. Adaptation and facilitation in the barnacle photoreceptor. J. Gen. Physiol. 67: 239–249.CrossRefGoogle Scholar
  30. (30).
    Harary, H.H. 1983. Optical probes of the physiology of Limulus ventral photoreceptors. Ph.D. Thesis, Harvard University.Google Scholar
  31. (31).
    Harary, H.H., and Brown, J.E. 1984. Spatially nonuniform changes in intracellular calcium ion concentrations. Science 224: 292–294.PubMedCrossRefGoogle Scholar
  32. (32).
    Lasansky, A., and Fuortes, M.G.F. 1969. The site of origin of electrical responses in the visual cells of the leech, Hirudo medicinalis. J. Cell Biol. 42: 241–252.PubMedCrossRefGoogle Scholar
  33. (33).
    Lisman, J.E. 1976. Effects of removing extracellular Ca2+ on excitation and adaptation in Limulus ventral photoreceptors. Biophys. J. 16: 1331–1335.PubMedCrossRefGoogle Scholar
  34. (34).
    Lisman, J.E., and Brown, J.E. 1972. The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J. Gen. Physiol. 59: 701–719.PubMedCrossRefGoogle Scholar
  35. (35).
    Lisman, J.E., and Brown, J.E. 1975a. Light-induced changes of sensitivity in Limulus ventral photoreceptors. J. Gen. Physiol. 66: 473–488.PubMedCrossRefGoogle Scholar
  36. (36).
    Lisman, J.E., and Brown, J.E. 1975b. Effects of intracellular injection of calcium buffers on light adaptation in Limulus ventral photoreceptors. J. Gen. Physiol. 66: 489–506.PubMedCrossRefGoogle Scholar
  37. (37).
    Lisman, J.E., and Strong, J.A. 1979. The initiation of excitation and light adaptation in Limulus ventral photoreceptors. J. Gen. Physiol. 73: 219–243.PubMedCrossRefGoogle Scholar
  38. (38).
    Maaz, G., and Stieve, H. 1980. The correlation of the receptor potential with the light induced transient increase in intracellular calcium-concentration measured by absorption changes of arsenazo III injected into Limulus ventral nerve photoreceptor cell. Biophys. Struct. Mech. 6: 191–208.PubMedCrossRefGoogle Scholar
  39. (39).
    Meech, R.W., and Brown, H.M. 1976. Invertebrate photoreceptors: A survey of recent experiments on photoreceptors from Balanus and Limulus. Persp. Exp. Biol. I: 331–351.Google Scholar
  40. (40).
    Millecchia, R.; Bradbury, J.; and Mauro, A. 1966. Simple photoreceptors in Limulus polyphemus. Science 154: 1199–1201.PubMedCrossRefGoogle Scholar
  41. (41).
    Millecchia, R., and Mauro, A. 1969a. The ventral photoreceptor cells of Limulus II. The basic photoresponse. J. Gen. Physiol. 54: 310–330.PubMedCrossRefGoogle Scholar
  42. (42).
    Millecchia, R., and Mauro, A. 1969b. The ventral photoreceptor cells of Limulus III. A voltage-clamp study. J. Gen. Physiol. 54: 331–351.PubMedCrossRefGoogle Scholar
  43. (43).
    Minke, B., and Armon, E. 1984. Activation of electrogenic Na-Ca exchange by light in fly photoreceptors. Vision Res. 24: 109–115.PubMedCrossRefGoogle Scholar
  44. (44).
    Nagy, K., and Stieve, H. 1983. Changes in intracellular calcium ion concentration, in the course of dark adaptation measured by arsenazo III in the Limulus photoreceptor. Biophys. Struct. Mech. 9: 207–223.CrossRefGoogle Scholar
  45. (45).
    Payne, R.; Fein, A.; and Corson, D.W. 1984. A rise in intracellular calcium is necessary and perhaps sufficient for photoreceptor excitation and adaptation by inositol 1, 4, 5-trisphosphate. Biol. Bull. 167: 531–532 (Abstract).Google Scholar
  46. (46).
    Perrelet, A., and Bader, C.R. 1978. Morphological evidence for calcium stores in photoreceptors of the honeybee drone retina. J. Ultrastruct. Res. 63: 237–243.PubMedCrossRefGoogle Scholar
  47. (47).
    Raggenbass, M. 1983. Effects of extracellular calcium and of light adaptation on the response to dim light in honeybee drone photoreceptors. J. Physiol. 344: 525–548.PubMedGoogle Scholar
  48. (48).
    Stieve, H. 1981. Roles of calcium in visual transduction in invertebrates. In Sense Organs, eds. M.S. Laverack and D.J. Casens, pp. 163–185. Glasgow: Blackie and Sons, Ltd.Google Scholar
  49. (49).
    Stieve, H., and Bruns, M. 1978. Extracellular calcium, magnesium and sodium ion competition in the conductance control of the photosensory membrane of Limulus ventral nerve photoreceptor. Z. Naturforsch. 33c: 574–579.Google Scholar
  50. (50).
    Stieve, H., and Klomfass, J. 1981. Calcium dependence of light evoked membrane current signal and membrane voltage signal and their changes due to light adaptation in Limulus photoreceptor. Biophys. Struct. Mech. 7: 345.CrossRefGoogle Scholar
  51. (51).
    Stieve, H., and Pflaum, M. 1978. The response height versus stimulus intensity curve of the ventral nerve photoreceptor of Limulus depending on adaptation and external calcium concentration. Vision Res. 18: 747–749.PubMedCrossRefGoogle Scholar
  52. (52).
    Waloga, G.; Brown, J.E.; and Pinto, L.H. 1975. Detection of changes in Ca(in)from Limulus ventral photoreceptors using arsenazo III. Biol. Bull. 149: 449–450.Google Scholar
  53. (53).
    Walz, B. 1979. Subcellular calcium localization and ATP-dependent Ca2+ uptake by smooth endoplasmic reticulum in an invertebrate photo receptor cell. An ultrastructural, cytochemical and X-ray microanalytical study. Eur. J. Cell Biol. 20: 83–91.PubMedGoogle Scholar
  54. (54).
    Walz, B. 1982a. Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor. I. Intracellular topography as revealed by OsFeCN staining and in situ Ca accumulation. J. Cell Biol. 93: 839–848.PubMedCrossRefGoogle Scholar
  55. (55).
    Walz, B. 1982b. Ca2+-sequestering smooth endoplasmic reticulum in an invertebrate photoreceptor II. Its properties as revealed by microphotometric measurements. J. Cell Biol. 93: 849–859.PubMedCrossRefGoogle Scholar

Copyright information

© Dr. S. Bernhard, Dahlem Konferenzen, Berlin 1986

Authors and Affiliations

  • J. E. Brown
    • 1
  1. 1.Dept. of OphthalmologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations