Skip to main content

The Light-induced Conductance Change in the Vertebrate Rod

  • Conference paper
The Molecular Mechanism of Photoreception

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 34))

  • 67 Accesses

Abstract

The molecular structure of the light-modulated channel in the vertebrate rod is unknown and we remain far from being able even to postulate what it might be. By discussing what is presently known about the electrical properties and ion selectivity of the channel and what they might imply for channel structure, this paper attempts to narrow the range of possibilities.

Several factors suggest that the structure of the light-modulated channel must be quite different from that of commonly studied ionic pores such as the Na+ channels of nerve membranes. Thus, although its ion selectivity falls in the same sequence as that of the Na+ channel in nerve, it is only poorly selective for Na+ over K+. Electrical measurements have revealed little evidence of any intrinsic, voltage-dependent channel gating. Moreover, the single-channel conductance, estimated on the basis of patch-clamp measurements of membrane noise, appears to be two orders or magnitude lower than that of the nerve Na+ channel, and estimated single-channel ion fluxes are similarly very small.

Of course, ions can also cross biological membranes via membrane-bound carrier molecules. The properties of such molecules are discussed in some detail and compared with those of the light-modulated channel. It is concluded that if the light-modulated channel is an ion carrier, it is probably not a mobile carrier like Valinomycin. A hybrid structure, having some of the features of a pore, seems more likely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R.H. 1969. Rectification in muscle membrane. Prog. Biophys. Molec. Biol. 19: 341–369.

    Article  Google Scholar 

  2. Bader, C.R.; MacLeish, P.R.; and Schwartz, E.A. 1979. A voltageclamp study of the light response in solitary rods of the tiger salamander. J. Physiol. 296: 1–26.

    PubMed  CAS  Google Scholar 

  3. Baylor, D.A., and Lamb, T.D. 1982. Local effects of bleaching in retinal rods of the toad. J. Physiöl. 328: 49–71.

    PubMed  CAS  Google Scholar 

  4. Baylor, D.A.; Matthews, G.; and Yau, K.-W. 1980. Two components of electrical dark noise in retinal rod outer segments. J. Physiol. 309: 591–621.

    PubMed  CAS  Google Scholar 

  5. Begenisch, T. 1975. Magnitude and location of surface charges in Myxicola giant axons. J. Gen. Physiol. 66: 47–65.

    Article  Google Scholar 

  6. Bodoia, R.D., and Detwiler, P.B. 1984. Patch-clamp study of the light response of isolated frog retinal rods. Biophys. J. 45: 337a.

    Article  Google Scholar 

  7. Bortoff, A. 1964. Localization of slow potential responses in the Necturus retina. Vision Res. 4: 627–636.

    Article  PubMed  CAS  Google Scholar 

  8. Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70: 283–306.

    Article  PubMed  CAS  Google Scholar 

  9. Brown, H.M.; Hagiwara, S.; Koike, H.; and Meech, R.W. 1970. Membrane properties of a barnacle photoreceptor examined by the voltageclamp technique. J. Physiol. 208: 385.

    PubMed  CAS  Google Scholar 

  10. Brown, J.E., and Pinto, L.H. 1974. Ionic mechanism for the photoreceptor potential of the retina of Bufo marinus. J. Physiol. 236: 575–591.

    PubMed  CAS  Google Scholar 

  11. Capovilla, M.; Caretta, A.; Cervetto, L.; and Torre, V. 1983. Ionic movements through light-sensitive channels of toad rods. J. Physiol. 343: 295–310.

    PubMed  CAS  Google Scholar 

  12. Cavaggioni, A.; Sorbi, R.T.; and Turini, S. 1973. Efflux of potassium from isolated rod outer segments: a photic effect. J. Physiol. 232: 609–620.

    PubMed  CAS  Google Scholar 

  13. Chandler, W.K., and Meves, H. 1965. Voltage clamp experiments on internally perfused giant axons. J. Physiol. 180: 788.

    PubMed  CAS  Google Scholar 

  14. DeFelice, L.J. 1981. Introduction to Membrane Noise. Plenum: New York.

    Book  Google Scholar 

  15. Detwiler, P.B.; Connor, J.D.; and Bodoia, R.D. 1982. Gigaseal patch clamp recordings from outer segments of intact retinal rods. Nature 300: 59–61.

    Article  PubMed  CAS  Google Scholar 

  16. DiPolo, R., and Beauge, L. 1983. The calcium pump and sodium-calcium exchange in squid axons. Ann. Rev. Physiol. 45: 313–324.

    Article  CAS  Google Scholar 

  17. Fain, G.L.; Gerschenfeld, H.M.; and Quandt, F.N, 1980. Ca2+ spikes in rods. J. Physiol. 303: 495–513.

    PubMed  CAS  Google Scholar 

  18. Fain, G.L., and Lisman, J.E. 1981. Membrane conductances of photoreceptops. Prog. Biophys. Molec. Biol. 37: 91–147.

    Article  CAS  Google Scholar 

  19. Frankenhäuser, B., and Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons. J. Physiol. 137: 218–244.

    Google Scholar 

  20. Frankenhäuser, B., and Moore, L.E. 1963. The effect of temperature on the sodium and potassium permeability changes in myelinated fibres of Xenopus laevis. J. Physiol. 169: 431–437.

    Google Scholar 

  21. Gold, G.H., and Korenbrot, J.I. 1980. Light-induced Ca release by intact retinal rods. Proc. Natl. Acad. Sci. USA 77: 5557–5561.

    Article  PubMed  CAS  Google Scholar 

  22. Gold, G.H., and Korenbrot, J.I. 1981. The regulation of calcium in the intact retinal rod: a study of light-induced calcium release by the outer segment. Curr. Top. Membr. Trans. 15: 307–330.

    CAS  Google Scholar 

  23. Hagins, W.A.; Penn, R.D.; and Yoshikami, S. 1970. Dark current and photocurrent in retinal rods. Biophys. J. 10: 380–412.

    Article  PubMed  CAS  Google Scholar 

  24. Hille, B. 1970. Ionic channels in nerve membranes. Prog. Biophys. Molec. Biol. 21: 1–32.

    Article  CAS  Google Scholar 

  25. Hodgkin, A.L.; McNaughton, P.A.; Nunn, B.J.; and Yau, K.-W. 1984. Effect of ions on retinal rods from Bufo marinus. J. Physiol. 350: 649–680.

    PubMed  CAS  Google Scholar 

  26. Knauf, P.A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. Curr. Top. Membr. Trans. 12: 249–363.

    CAS  Google Scholar 

  27. Kolb, H.-A., and Lauger, P. 1978. Spectral analysis of current noise fenerated by carrier-mediated ion transport. J. Membr. Biol. 41: 167–87.

    Article  Google Scholar 

  28. Korenbrot, J.I., and Cone, R.A. 1972. Dark ionic flux and the effects of light in isolated rod outer segments. J. Gen. Physiol. 60: 20–45.

    Article  PubMed  CAS  Google Scholar 

  29. Lamb, T.D. 1984. Effects of temperature changes on toad rod photocurrents. J. Physiol. 346: 557–578.

    PubMed  CAS  Google Scholar 

  30. Lisman, J.E., and Brown, J.E. 1972. The effects of intracellular ionophoretic injection of calcium and sodium ions on the light response of Limulus photoreceptors. J. Gen. Physiol. 59: 701.

    Article  PubMed  CAS  Google Scholar 

  31. MacLeish, P.R.; Schwartz, E.A.; and Tachibana, M. 1984. Control of the generator current in solitary rods of the Ambystoma tigrinum retina. J. Physiol. 348: 645–664.

    PubMed  CAS  Google Scholar 

  32. Owen, W.G., and Torre, V. 1981. Ionic studies of vertebrate rods. Curr. Top. Membr. Trans. 15: 33–57.

    CAS  Google Scholar 

  33. Pitts, B.J.R. 1979. Stoichiometry of sodium-calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 254: 6232–6235.

    PubMed  CAS  Google Scholar 

  34. Pressman, B.C. 1976. Biological applications of ionophores. Ann. Rev. Biochem. 45: 501–530.

    Article  PubMed  CAS  Google Scholar 

  35. Schnetkamp, P.P.M. 1980. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes. Biochim. Biophys. Acta 598: 66–90.

    Article  PubMed  CAS  Google Scholar 

  36. Sen, A.K., and Widdas, W.F. 1962. Determination of the temperature and pH dependence or glucose transfer across the human erythrocyte membrane measured by glucose exit. J. Physiol. 160: 392–403.

    PubMed  CAS  Google Scholar 

  37. Sillman, A.J.; Ito, H.; and Tomita, T. 1969. Studies on the mass receptor potential of the isolated frog retina. II. On the basis of the ionic mechanism. Vision Res. 9: 1443–1451.

    CAS  Google Scholar 

  38. Tomita, T. 1965. Electrophysiological study of the mechanisms subserving colour coding in the rish retina. Cold S.H. Symp. Quant. Biol. 30: 559–566.

    CAS  Google Scholar 

  39. Torre, V. 1982. The contribution of the electrogenic sodium-potassium pump to the electrical activity of toad rods. J. Physiol. 333: 315–341.

    PubMed  CAS  Google Scholar 

  40. Toyoda, J.; Nosaki, H.; and Tomita, T. 1969. Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9: 453–463.

    Article  PubMed  CAS  Google Scholar 

  41. Waloga, G.; Brown, J.E.; and Pinto, L.H. 1975. Detection of changes in Cain from Limulus photoreceptors using arsenazo III. Biol. Bull. 149: 449.

    Google Scholar 

  42. Woodruff, M.L.; Fain, G.L.; and Bastian, B. 1982. Light-dependent ion influx into toad photoreceptors. J. Gen. Physiol. 80: 517–536.

    Article  PubMed  CAS  Google Scholar 

  43. Wormington, CM., and Cone, R.A. 1978. Ionic blockage of the light-regulated channel in isolated rod outer segments. J. Gen. Physiol. 71: 657–681.

    Article  PubMed  CAS  Google Scholar 

  44. Yau, K.-W.; McNaughton, P.A.; and Hodgkin, A.L. 1981. Effect of ions on the light-sensitive current in retinal rods. Nature 292: 502–505.

    Article  PubMed  CAS  Google Scholar 

  45. Yau, K.-W., and Nakatani, K. 1984. Cation selectivity of the light-sensitive conductance in retinal rods. Nature 309: 352–354.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Stieve

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen, Berlin

About this paper

Cite this paper

Owen, W.G. (1986). The Light-induced Conductance Change in the Vertebrate Rod. In: Stieve, H. (eds) The Molecular Mechanism of Photoreception. Dahlem Workshop Reports, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70444-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70444-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70446-8

  • Online ISBN: 978-3-642-70444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics