Skip to main content

Microbial Intervention in Trace Element-containing Industrial Process Streams and Waste Products

  • Conference paper
The Importance of Chemical “Speciation” in Environmental Processes

Part of the book series: Dahlem Workshop Reports ((DAHLEM LIFE,volume 33))

Abstract

Microorganisms are important agents in solubilization, precipitation, accumulation, and alkylation-dealkylation reactions involving heavy elements in environments associated with industrial process streams and wastes. Such microbial processes may be harmful or beneficial. Microbial resistance to toxic heavy elements often involves metabolic mechanisms causing chemical species transformation. With certain bacteria heavy elements may serve as metabolic energy sources. The presence of chemical species of trace elements in these environments is critical for understanding the mechanisms of microbial heavy-element transformations and optimizing or inhibiting these processes for industrial application and environmental assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews GF, Maczuga J (1982) Bacterial coal desulfurization. In: Scott CD (ed) Biotechnology and Bioengineering Symposium No. 12, New York: Wiley Interscience, pp 337–348.

    Google Scholar 

  • Belly RT, Kydd GC (1982) Silver resistance in microorganisms. Dev Ind Microbiol 23: 567–577

    Google Scholar 

  • Bennett JC, Tributsch H (1978) Bacterial leaching patterns on pyrite crystal surfaces. J Bacteriol 134: 310–317

    PubMed  CAS  Google Scholar 

  • Beveridge TJ (1984) Mechanisms of the binding of metallic ions to bacterial walls and the possible impact on microbial ecology. In: Klug MJ, Reddy CA (eds) Current Perspectives in Microbial Ecology, Washington, DC: American Society for Microbiology, pp 601–607.

    Google Scholar 

  • Blair WR, Olson GJ, Brinckman FE, Iverson WP (1982) Accumulation and fate of tri-n-butyltin chloride in estuarine bacteria. Microb Ecol 8: 241–251

    Article  CAS  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36: 217–238

    Article  CAS  Google Scholar 

  • Bloomfield C, Coulter JK (1973) Genesis and management of acid sulfate soils. In: Brady NC (ed) Advances in Agronomy, vol 25, New York: Academic Press, pp 265–326.

    Google Scholar 

  • Booth JE, Williams JW (1984) The isolation of a mercuric ion-reducing flavoprotein from Thiobacillus ferrooxidans. J Gen Microbiol 130: 725–730

    CAS  Google Scholar 

  • Brierley CL (1978) Bacterial leaching. CRC Crit Rev Microbiol 6: 207–262

    Article  PubMed  CAS  Google Scholar 

  • Brierley JA (1983) Biological accumulation of some heavy metals–biotechnological applications. In: Westbroek P, de Jong EW (eds) Biomineralization and Biological Metal Accumulation, D Reidel Pub Co, pp 499–509.

    Chapter  Google Scholar 

  • Brinckman FE (1984) Environmental effects of organotins. Paper presented at the Fourth International Conference on Germanium, Tin, and Lead, Montreal, Aug. 8–12, 1983

    Google Scholar 

  • Brown MJ, Lester JN (1979) Metal removal in activated sludge: The role of bacterial extracellular polymers. Wat Res 13: 817–838

    Google Scholar 

  • Charley RC, Bull AT (1979) Bioaccumulation of silver by a multispecies community of bacteria. Arch Microbiol 123: 239–244

    Article  PubMed  CAS  Google Scholar 

  • Cole MA (1979) Solubilization of heavy metal sulfides by heterotrophic soil bacteria. Soil Sci 127: 313–317

    Article  CAS  Google Scholar 

  • Craig PJ (1980) Metal cycles and biological methylation. In: Hutzinger O (ed) The Handbook of Environmental Chemistry. New York: Springer-Verlag, pp 169–227

    Google Scholar 

  • Craig PJ, Rapsomanikis S (1982) A new route to tris(dimethylsulfide) with tetramethyltin as co-product; the wider implications of this and some other reactions leading to tetramethyltin and -lead from iodomethane. J Chem Soc, Chem Commun 114

    Google Scholar 

  • DiSpirito AA, Tuovinen OH (1982) Uranous ion oxidation and carbon dioxide fixation by Thiobacillus ferrooxidans. Arch Microbiol 133: 28–32

    Article  CAS  Google Scholar 

  • Dugan PR, Apel WA (1978) Microbiological desulfurization of coal. In: Murr LE, Torma AE, Brierley JA (eds) Applications of Bacterial Leaching and Related Microbiological Phenomena. New York: Academic Press, pp 223–250.

    Google Scholar 

  • Dunn GM, Bull AT (1983) Bioaccumulation of copper by a defined community of activated sludge bacteria. Eur J Appl Microbiol Biotechnol 17: 30–34

    Article  CAS  Google Scholar 

  • Ehrlich HL (1978) Inorganic energy sources for chemolithotrophic and autotrophic bacteria. Geomicrobiol J 1: 65–83

    Article  CAS  Google Scholar 

  • Furr AK, Lawrence AW, Tong SSC, Grandolfo MC, Hofstader RA, Bache CA, Gutenmann WH, Lisk DJ (1976) Multielement and chlorinated hydrocarbon analysis of municipal sewage sludges of American cities. Envir Sci Technol 10: 683–687

    Article  CAS  Google Scholar 

  • Gale NL, Wixson BG (1978) Removal of heavy metals from industrial effluents by algae. Dev Ind Microbiol 20: 259–273

    CAS  Google Scholar 

  • Gokcay CF, Yurteri RN (1983) Microbial desulfurization of lignites by a thermophilic bacterium. Fuel 62: 1223–1224

    Article  CAS  Google Scholar 

  • Hallberg RO, Bubela B, Ferguson J (1980) Metal chelation in sedimentary systems. Geomicrobiol J 2: 99–113

    Article  CAS  Google Scholar 

  • Hoffman MR, Faust BC, Panda FA, Koo HH, Tsuchiya HM (1981) Kinetics of the removal of iron pyrite from coal by microbial catalysis. Appl Envir Microbiol 42: 259–271

    Google Scholar 

  • Holmes DS, Lobos JH, Bopp LH, Welch GC (1984) Cloning of a Thiobacillus ferrooxidans plasmid in Escherichia coli. J Bacteriol 157: 324–326

    PubMed  CAS  Google Scholar 

  • Iverson WP (1972) Biological corrosion. In: Fontana MG (ed) Advances in Corrosion Science and Technology, vol 2. New York: Plenum Press

    Google Scholar 

  • Jack TR, Sullivan EA, Zajic JE (1980) Growth inhibition of Thiobacillus thiooxidans by metals and reductive detoxification of vanadium(V). Eur J Appl Microbiol 9: 21–30

    Article  CAS  Google Scholar 

  • Jarvie AW, Whitmore AP (1981) Methylation of elemental lead and lead(II) salts in aqueous solution. Envir Technol Lett 2: 197–204

    Article  CAS  Google Scholar 

  • Kargi F (1982) Microbiological coal desulphurization. Enzyme Microbiol Technol 4: 13–19

    Article  CAS  Google Scholar 

  • Kelly DP, Norris PR, Brierley CL (1979) Microbiological methods for the extraction and recovery of metals. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial Technology: Current State, Future Prospects. Cambridge: Cambridge University Press, pp 263–308.

    Google Scholar 

  • LeRoux NW (1970) Mineral attack by microbiological processes. In: Miller JDA (ed) Microbial Aspects of Metallurgy. New York: American Elsevier, pp 173–182.

    Google Scholar 

  • Lundgren DG, Malouf EE (1983) Microbial extraction and concentration of metals. Adv Biotechnol Proc 1: 223–249

    CAS  Google Scholar 

  • Manders WR, Olson GJ, Brinckman FE, Bellama JM (1984) A novel synthesis of methyltin triiodide with environmental implications. J Chem Soc, Chem Commun 1984: 538–540

    Google Scholar 

  • Mao MWH, Dugan PR, Martin PAW, Tuovinen OH (1980) Plasmid DNA in chemoorganotrophic Thiobacillus ferrooxidans and T. acidophilus. FEMS Microbiol Lett 8: 121–125

    Article  CAS  Google Scholar 

  • Nelson PO, Cheng AK, Hudson MC (1981) Factors affecting the fate of heavy metals in the activated sludge process. J Wat Poll Control Fed 53: 1323–1333

    CAS  Google Scholar 

  • Norris PR, Kelly DP (1982) The use of mixed microbial cultures in metal recovery. In: Bull AT, Slater JH (eds) Microbial Interactions and Communities. London: Academic Press, pp 443–474.

    Google Scholar 

  • Olson GJ, Porter FD, Rubenstein J, Silver S (1982) Mercuric reductase enzyme from a mercury-volatilizing strain of Thiobacillus ferrooxidans. J Bacteriol 151: 1230–1236

    PubMed  CAS  Google Scholar 

  • Pan-Hou HKS, Imura N (1981) Role of hydrogen sulfide in mercury resistance determined by plasmid of Clostridium cochlearium T-2. Arch Microbiol 129: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Postgate JR (1979) The Sulphate Reducing Bacteria. Cambridge: Cambridge University Press

    Google Scholar 

  • Raymond KN, Carrano CJ (1979) Coordination chemistry and microbial iron transport. Acc Chem Res 12: 183–190

    Article  CAS  Google Scholar 

  • Schonborn W, Hartmann H (1978) Bacterial leaching of metals from sewage sludge. Eur J Appl Microbiol 5: 305–313

    Article  Google Scholar 

  • Siegel SM, Siegel BZ, Clark KE (1983) Bio-corrosion: solubilization and accumulation of metals by fungi. Water Air Soil Poll 19: 229–236

    Article  CAS  Google Scholar 

  • Silver S (1983) Bacterial transformations of and resistances to heavy metals. In: Changing Metal Cycles and Human Health. Dahlem Konferenzen. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag

    Google Scholar 

  • Silverman MP, Munoz EF (1971) Fungal leaching of titanium from rock. Appl Microbiol 22: 923–924

    PubMed  CAS  Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: The rate-determining step. Science 167: 1121–1123

    Google Scholar 

  • Spisak JF (1978) Metallurgical effluents - growing challenges for second generation treatment. Dev Ind Microbiol 20: 249–257

    CAS  Google Scholar 

  • Sterritt RM, Lester JN (1979) The microbiological control of mine waste pollution. Min Envir 1: 45–47

    Article  CAS  Google Scholar 

  • Strandberg GW, Shumate SE, Parrott JR (1981) Microbial cells as biosorbents for heavy metals: Accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Envir Microbiol 41: 237–245

    Google Scholar 

  • Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium, Thiobacillus ferrooxidans. J Bacteriol 62: 605–611

    Google Scholar 

  • Thayer JS, Brinckman FE (1982) The biological methylation of metals and metalloids. In: Stone FGA, West R (eds) Advances in Organometallic Chemistry, vol 20. New York: Academic Press, pp 313–356.

    Chapter  Google Scholar 

  • Thayer JS, Olson GJ, Brinckman FE (1984) Iodomethane as a potential metal mobilizing agent in nature. Envir Sci Technol 18: 726–729

    Article  CAS  Google Scholar 

  • Vuorinen A, Hiltunen P, Hsu JC, Tuovinen OH (1983) Solubilization and speciation of iron during pyrite oxidation by Thiobacillus ferrooxidans. Geomicrobiol J 3: 95–120

    Article  CAS  Google Scholar 

  • Wenberg GM, Erbisch FH, Volin ME (1971) Leaching of copper by fungi. Soc Mining Eng AIME 250: 207–212

    CAS  Google Scholar 

  • Wood JM, Cheh A, Dizikes LJ, Ridley WP, Rakow S, Lakowicz JR (1978) Mechanisms for the biomethylation of metals and metalloids. Fed Proc 37: 16–21

    PubMed  CAS  Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Envir Sci Technol 17: 582A - 590A

    Article  CAS  Google Scholar 

  • Yen TF, Chilingar GV (1976) Introduction to oil shales. In: Yen TF, Chilingarian GV (eds) Oil Shale. Amsterdam: Elsevier, pp 1–12.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Bernhard F. E. Brinckman P. J. Sadler

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Dr. S. Bernhard, Dahlem Konferenzen

About this paper

Cite this paper

Olson, G.J. (1986). Microbial Intervention in Trace Element-containing Industrial Process Streams and Waste Products. In: Bernhard, M., Brinckman, F.E., Sadler, P.J. (eds) The Importance of Chemical “Speciation” in Environmental Processes. Dahlem Workshop Reports, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70441-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70441-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70443-7

  • Online ISBN: 978-3-642-70441-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics