Skip to main content

Oxytocin and Behavior

  • Chapter
Neurobiology of Oxytocin

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 6))

Abstract

The past 10 years have witnessed the growth of the view that neuropeptides are essential to the functional integrity of the central nervous system. Oxytocin (OXT), which was long considered to be implicated in milk ejection only, is a neuropeptide with potent behavioral effects. Since the original discovery by Sterba (1974), a great number of morphological (for reviews, see Buijs 1983; Swanson and Sawchenko 1983; Sofroniew 1983; Palkovits and Brownstein 1983; Kozlowski et al. 1983) and biochemical (Dogterom et al. 1978; Mens et al. 1983; Kovács et al. 1985d; Hawthorn et al. 1984) results indicate that the biologically active OXT is present in various extrahypothalamic (mainly limbic and brainstem) brain regions. The release of extrahypothalamic OXT by depolarizing stimuli has been demonstrated (Buijs and Van Heerikhuize 1982), and the existence of specific binding sites for OXT (putative OXT receptors) has been described in limbic brain structures (Ferrier et al. 1983; Brinton et al. 1984). However, the biological significance of OXT in the brain is not clear. The neuropeptide has been implicated in the regulation of behavioral reactions. Evidence has accumulated that OXT attenuates learning and memory processes (for review, see Kovács and Telegdy 1982), regulates the adaptive response to narcotic analgesics (Kovács et al. 1984 b, c), and alters the efficacy of addictive drugs (Van Ree and De Wied 1977 a; Kovács and Telegdy 1984; Kovács et al. 1985 a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abood LG, Knapp R, Mitchell T, Booth H, Schwaab L (1980) Chemical requirements of vasopressin for barrel rotation convulsions and reversal by oxytocin. J Neurosci Res 5:191–199

    Article  PubMed  CAS  Google Scholar 

  • Andén NE, Dahlström A, Fuxe K, Larsson K (1966) Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol Toxicol 24:263–274

    Article  Google Scholar 

  • Andén NE, Alander T, Grabowska-Andén M, Liljeberg B, Lindgren S, Thornström U (1984) The pharmacology of pre- and postsynaptic dopamine receptors: differential effects of dopamine receptor agonists and antagonists. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines, part B: Neuropharmacology and central nervous system - theoretical aspects. Alan Liss, New York, pp 19–24

    Google Scholar 

  • Andrews JS, Newton BA, Sahgal A (1983) The effect of vasopressin on positively rewarded responding and on locomotor activity in rats. Neuropeptides 4:17–29

    Article  PubMed  CAS  Google Scholar 

  • Barbeau A, Roy M, Kastin AJ (1976) Double-blind evaluation of oral L-prolyl-L-leucyl- glycine amide in Parkinson’s disease. Can Med Assoc J 114:120–122

    PubMed  CAS  Google Scholar 

  • Bhargava HN (1983) Effect of cyclo(leu-gly) on the supersensitivity of dopamine receptors in spontaneously hypertensive rats. Life Sci 32:2131–2137

    Article  PubMed  CAS  Google Scholar 

  • Bhargava HN (1984) Enhanced striatal 3H-spiroperidol binding induced by chronic haloperidol treatment inhibited by peptides administered during the withdrawal phase. Life Sci 34:873–879

    Article  PubMed  CAS  Google Scholar 

  • Bhargava HN, Pandey RN, Matwyshyn GA (1983) Effects of prolyl-leucyl-glycinamide and cyclo(leucyl-glycine) on morphine-induced antinociception and brain μ, σ and κ opiate receptors. Life Sci 32:2095–2101

    Article  CAS  Google Scholar 

  • Bigl H, Stark H, Ott T, Sterba G, Matthies HJ (1977) Beeinflussung von Lernprozessen durch Hinterlappenhormone am Beispiel der Ratte. Sitzungsberichte der Akademie der Wissenschaften der DDR (Berlin, DDR) 5:84–90

    Google Scholar 

  • Björklund A, Lindvall O, Nobin A (1975) Evidence of an incerto-hypothalamic neurone system in the rat. Brain Res 89:29–42

    Article  PubMed  Google Scholar 

  • Bohus B, Ader B, De Wied D (1972) Effects of vasopressin on active and passive avoidance behavior. Horm Behav 3:191–197

    Article  PubMed  CAS  Google Scholar 

  • Bohus B, Kovács GL, De Wied D (1978 a) Oxytocin, vasopressin and memory: opposite effects on consolidation and retrieval processes. Brain Res 157:414–417

    Article  PubMed  CAS  Google Scholar 

  • Bohus B, Urban I, Van Wimersma Greidanus TJB, De Wied D (1978 b) Opposite effects of oxytocin and vasopressin on avoidance behavior and hippocampal theta rhythm in the rat. Neuropharmacology 17:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bohus B, Conti L, Kovács GL, Versteeg DHG (1982) Modulation of memory processes by neuropeptides: interaction with neurotransmitter systems. In: Marsan CA, Matthies HJ (eds) Neuronal plasticity and memory formation. Raven, New York, pp 75–87

    Google Scholar 

  • Brinton RE, Wamsley JK, Gee KW, Wan YP, Yamamura HI (1984) (3H)Oxytocin binding sites in the rat brain demonstrated by quantitative light microscopic autoradiography. Eur J Pharmacol 102:365–367

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM (1983) Vasopressin and oxytocin - their role in neurotransmission. Pharmacol Ther 22:127–141

    Article  PubMed  CAS  Google Scholar 

  • Buijs RM, Van Heerikhuize JJ (1982) Vasopressin and oxytocin release in the brain: a synaptic event. Brain Res 252:71–76

    Article  PubMed  CAS  Google Scholar 

  • Burbach JPH, De Wied D (1981) Memory effects and brain proteolysis of neurohypophyseal hormones. In: Schlesinger DH (ed) Neurohypophyseal peptide hormones and other biologically active peptides. Elsevier/North Holland, Amsterdam, pp 69–87

    Google Scholar 

  • Burbach JPH, Lebouille JLM (1983) Proteolytic conversion of arginine-vasopressin and oxytocin by brain synaptic membranes. J Biol Chem 258:1487–1494

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Bohus B, Kovács GL, Van Nispen JW, Greven HM, De Wied D (1983 a) Oxytocin is a precursor of potent behaviourally active neuropeptides. Eur J Pharmacol 94:125–131

    Article  PubMed  CAS  Google Scholar 

  • Burbach JPH, Kovács GL, Wang XC, De Wied D (1983 b) Metabolites of arginine-vaso- pressin and oxytocin are highly potent neuropeptides in the brain. In: Koch G, Richter D (eds) Biochemical and clinical aspects of neuropeptides: synthesis, processing and gene structure. Academic, Orlando, pp 211–222

    Google Scholar 

  • Caldwell JD, Pedersen CA, Prange AJ (1984) Oxytocin facilitates sexual behavior in estrogen-treated ovariectomized rats. J Steroid Biochem 20:1510

    Article  Google Scholar 

  • Celis ME, Taleisnik S, Walter R (1971) Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone. Proc Natl Acad Sci (USA) 68:1428–1433

    Article  CAS  Google Scholar 

  • Chard T, Hudson CN, Edwards CRW, Boyd NRH (1971) Release of oxytocin and vasopressin by the human fetus during labour. Nature 234:352–354

    Article  PubMed  CAS  Google Scholar 

  • Cohn ML, Cohn M (1975) Barrel rotation induced by somatostatin in the non-lesioned rat. Brain Res 96:138–141

    Article  PubMed  CAS  Google Scholar 

  • Contreras P, Takemori AE (1981) Facilitation of morphine-induced tolerance and physical dependence by prolyl-leucyl-glycinamide. Eur J Pharmacol 71:259–268

    Article  PubMed  CAS  Google Scholar 

  • Cools AR, Broekkamp CLE, Gieles LCM, Megens A, Mortieaux HJGM (1977) Site of action of development of partial tolerance to morphine in cats. Psychoneuroendocrinology 2:17–33

    Article  PubMed  CAS  Google Scholar 

  • Costall B, Domeney AM, Naylor RJ (1984) Long-term consequences of antagonism by neuroleptics of behavioural events occurring during mesolimbic dopamine infusion. Neuropharmacology 23:287–294

    Article  PubMed  CAS  Google Scholar 

  • De Kloet ER, Rotteveel F, Voorhuis TD, Terlou M (1985) Topography of binding sites for neurohypophyseal hormones in rat brain. Eur J Pharmacol 110:113–119

    Article  PubMed  Google Scholar 

  • Delanoy RL, Dunn AJ, Tintner R (1978) Behavioral responses to intracerebroventricularly administered neurohypophyseal peptides in mice. Horm Behav 11:348–362

    Article  PubMed  CAS  Google Scholar 

  • Destrade C, Jafford R (1978) Post-trial hippocampal and lateral hypothalamic electrical stimulation. Facilitation of long-term memory of appetititive and avoidance learning tasks. Behav Biol 22:354–374

    Article  PubMed  CAS  Google Scholar 

  • De Wied D (1965) The influence of posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of conditioned avoidance response in rats. Int J Neuropharmacol 4:157–167

    Article  Google Scholar 

  • De Wied D (1969) Effects of peptide hormones on behavior. In: Ganong W, Martini L (eds) Frontiers in neuroendocrinology. Oxford University Press, New York, pp 97–140

    Google Scholar 

  • De Wied D (1976) Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19:685–690

    Article  PubMed  Google Scholar 

  • De Wied D (1979) Pituitary neuropeptides and behavior. In: Fuxe K, Hökfelt T, Luft R (eds) Central regulation of the endocrine system. Plenum, New York, pp 297–314

    Google Scholar 

  • De Wied D, Bohus B (1966) Long term and short term effect on retention of a conditioned avoidance response in rats by treatment respectively with long acting pitressin or α- MSH. Nature 212:1484–1486

    Article  PubMed  Google Scholar 

  • De Wied D, Bohus B (1979) Modulation of memory processes by neuropeptides of hypothalamic-neurohypophyseal origin. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from the single neuron to man. Raven, New York, pp 139–149

    Google Scholar 

  • De Wied D, Gispen WH (1976) Impaired development of tolerance to morphine analgesia in rats with hereditary diabetes insipidus. Psychopharmacology 46:27–29

    Article  Google Scholar 

  • De Wied D, Gispen WH (1977) Behavioral effects of peptides. In: Gainer H (ed) Peptides in neurobiology. Plenum, New York, pp 397–448

    Google Scholar 

  • De Wied D, Versteeg DHG (1979) Neurohypophyseal principles and memory. Fed Proc 38:2348–2354

    PubMed  Google Scholar 

  • De Wied D, Van Wimersma Greidanus TJB, Bohus B, Urban I, Gispen WH (1976) Vasopressin and memory consolidation. In: Corner MA, Swaab DF (eds) Perspectives in brain research. Prog Brain Res 45:181–191

    Chapter  Google Scholar 

  • De Wied D, Gaffori O, Van Ree JM, De Jong W (1984) Central target for the behavioural effects of vasopressin neuropeptides. Nature 308:276–278

    Article  PubMed  Google Scholar 

  • Dickinson SL, Slater P (1980) Opiate receptor antagonism by L-prolyl-L-leucyl-glycinam- ide, MIF-I. Peptides 1:293–299

    Article  PubMed  CAS  Google Scholar 

  • Dogterom J, Snijdewindt FGM, Buijs RM (1978) The distribution of vasopressin and oxytocin in the rat brain. Neurosci Lett 9:341–346

    Article  PubMed  CAS  Google Scholar 

  • Drago F, Bohus B, De Wied D (1981) Interaction between vasopressin and oxytocin in the modulation of passive avoidance retention of the rat. Neurosci Lett [Suppl] 7:S260

    Google Scholar 

  • Drago F, Kovács GL, Scapagnini U (1984) Prolactin-induced behavioral effects and opioids. In: Delitalia G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Frontiers in neuroscience. Raven, New York, pp 137–145

    Google Scholar 

  • Drago F, Kovács GL, Szabó G, Scapagnini U, Telegdy G (1985) Effects of haloperidol on morphine-induced analgesia, morphine tolerance and withdrawal in hyperprolactinaemic rats. Neuropharmacology 24:1027–1031

    Article  PubMed  CAS  Google Scholar 

  • Ehrensing RH, Kastin AJ, Larsons PF, Bishop GA (1978) Melanocyte-stimulating-hor- mone-release-inhibiting factor-I and tardive dyskinesia. Dis Nerv Syst 38:303–307

    Google Scholar 

  • Esposito R, Kornetsky C (1977) Morphine lowering of self-stimulation thresholds: lack of tolerance with long-term administration. Science 195:189–191

    Article  PubMed  CAS  Google Scholar 

  • Essmann WB (1971) The role of biogenic amines in memory consolidation. In: Adám G (ed) Biology of memory. Akadémiai Kiadó/Plenum, Budapest, pp 213–238

    Google Scholar 

  • Ettenberg A, Van der Koy D, Le Moal M, Koob GF, Bloom FE (1983) Can aversive properties of (peripherally-injected) vasopressin account for its putative role in memory? Behav Brain Res 7:331–350

    Article  PubMed  CAS  Google Scholar 

  • Fahrbach SE, Morrell JI, Pfaff DW (1985) Role of oxytocin in the onset of estrogen-facilitated maternal behavior. In: Amico JA, Robinson AG (eds) Oxytocin: clinical and laboratory aspects. Elsevier, Amsterdam, pp 372–388

    Google Scholar 

  • Fehm-Wolsdorf G, Born J, Voigt KH, Fehm HL (1984) Human memory and neurohypophyseal hormones: opposite effects of vasopressin and oxytocin. Psychoneuroendocrinology 9:285–292

    Article  Google Scholar 

  • Ferrier BM, Kennett DJ, Devlin MC (1980) Influence of oxytocin on human memory processes. Life Sci 27:2311–2317

    Article  PubMed  CAS  Google Scholar 

  • Ferrier BM, McClorry SA, Cochrane AW (1983) Specific binding of (3H)oxytocin in female rat brain. Can J Physiol Pharmacol 61:989–995

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein G, Zerbe RL, Faden I (1984) Central cardiovascular effects of vasotocin, oxytocin and vasopressin in conscious rats. J Pharmacol Exp Ther 228:348–353

    PubMed  CAS  Google Scholar 

  • Folley SJ, Knaggs GS (1966) Milk-ejection activity (oxytocin) in the external jugular vein blood of the cow, goat and sow, in relation to the stimulus of licking and suckling. J Endocrinol 34:197–214

    Article  PubMed  CAS  Google Scholar 

  • Friedman E, Friedman J, Gershon S (1973) Dopamine synthesis: stimulation by a hypothalamic factor. Science 182:831–832

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Hökfelt T, Ungerstedt U (1968) Localization of indolalkylamines in the CNS. In: Garattini S, Shore PE (eds) Advances in pharmacology, vol 6, part A, Academic, New York, pp 235–251

    Google Scholar 

  • Gash DM, Thomas GJ (1983) What is the importance of vasopressin in memory processes? Trends Neurosci 60:197–198

    Article  Google Scholar 

  • Gibbs DM (1984) Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sci 35:487–491

    Article  PubMed  CAS  Google Scholar 

  • Hagan JJ, Bohus B (1984) Vasopressin prolongs bradycardiac response during orientation. Behav Neural Biol 41:77–83

    Article  PubMed  CAS  Google Scholar 

  • Hawthorn J, Ang VTY, Jenkins JS (1984) Comparison of the distribution of oxytocin and vasopressin in the rat brain. Brain Res 307:289–294

    Article  PubMed  CAS  Google Scholar 

  • Himmelsbach CK (1943) With reference to physical dependence. Fed Proc 2:201–203

    CAS  Google Scholar 

  • Hoffmann PL, Ritzmann RF, Walter R, Tabakoff B (1978) Arginine vasopressin maintains ethanol tolerance. Nature 276:614–616

    Article  Google Scholar 

  • Izquierdo I, Perry ML, Dias RD, Souza DO, Elisabetsky E, Carrasco MA, Orsingher OA, Netto CA (1981) Endogenous opioids, memory modulation, and state dependency. In: Martinez JL, Jensen RA, Messing RB, Rigter H, McGaugh JL (eds) Endogenous peptides and learning and memory processes. Academic, New York, pp 269–290

    Google Scholar 

  • Joëls M, Urban IJA (1982) The effect of microiontophoretically applied vasopressin and oxytocin on single neurones in the septum and dorsal hippocampus of the rat. Neurosci Lett 33:79–84

    Article  PubMed  Google Scholar 

  • Judge MA, Quartermain D (1982) Characteristics of retrograde amnesia following reactivation of memory in mice. Physiol Behav 28:585–590

    Article  PubMed  CAS  Google Scholar 

  • Kastin AJ, Plotnikoff NP, Sandman CA, Spirtes MA, Kostrzewa RM, Paul SM, Stratton LO, Miller LH, Labrie F, Schally AV, Goldman H (1975) The effects of MSH and MIF on the brain. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 290–297

    Google Scholar 

  • Kastin AJ, Nissen C, Zadina JE, Schally AV, Ehrensing RH (1980) Naloxone-like actions of MIF-1 do not require the presence of the pituitary. Pharmacol Biochem Behav 13:907–912

    Article  PubMed  CAS  Google Scholar 

  • Kastin AJ, Zadina JE, Banks WA, Graf MV (1984) Misleading concepts in the field of brain peptides. Peptides 5:249–253

    Article  PubMed  CAS  Google Scholar 

  • Kennett DJ, Devlin MC, Ferrier BM (1982) Influence of oxytocin on human memory processes: validation by a control study. Life Sci 31:273–275

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M, Gaffori O, Manning M, Sawyer WH, Rivier J, Bloom FE (1981) Arginine vasopressin and a vasopressin antagonist peptide: opposite effects on extinction of active avoidance in rats. Regul Peptides 2:153–163

    Article  CAS  Google Scholar 

  • Kordower JH, Bodnar RJ (1984) Vasopressin analgesia: specificity of action and nonopioid effects. Peptides 5:747–756

    Article  PubMed  CAS  Google Scholar 

  • Kovács GL, De Wied D (1981) Endorphin influences on learning and memory. In: Martinez JL, Jensen RA, Messing RB, Rigter H, McGaugh JL (eds) Endogenous peptides and learning and memory processes. Academic, New York, pp 231–247

    Google Scholar 

  • Kovács GL, De Wied D (1983) Hormonally active arginine-vasopressin suppresses endotoxin-induced fever in rats: lack of effect of oxytocin and a behaviorally active vasopressin fragment. Neuroendocrinology 37:258–261

    Article  PubMed  Google Scholar 

  • Kovács GL, Telegdy G (1978) Indoleamines and behavior. The possible role of serotoni- nergic mechanisms in the pituitary-adrenocortical hormone-induced behavioral actions. In: Lissák K (ed) Recent progress of neurobiology in Hungary, vol 7. Akadémiai Kiadó, Budapest, pp 31–97

    Google Scholar 

  • Kovács GL, Telegdy G (1982) Role of oxytocin in memory and amnesia. Pharmacol Ther 18:375–395

    Article  PubMed  Google Scholar 

  • Kovács GL, Telegdy G (1983) Effects of oxytocin, des-glycinamide-oxytocin and anti-oxytocin serum on the α-MPT-induced disappearance of catecholamines in the rat brain. Brain Res 268:307–314

    Article  PubMed  Google Scholar 

  • Kovács GL, Telegdy G (1984) Oxytocin diminishes narcotic addiction: effects on morphine tolerance/withdrawal and heroin self-administration. Neurosci Lett [Suppl] 18:S354

    Google Scholar 

  • Kovács GL, Telegdy G (1985) Oxytocin in memory and reinforcement. In: Amico J, Robinson AG (eds) Oxytocin: clinical and laboratory studies. Elsevier, Amsterdam, pp 359–371

    Google Scholar 

  • Kovács GL, Vécsei L, Sazbó G, Telegdy G (1977) The involvement of catecholaminergic mechanisms in the behavioural action of vasopressin. Neurosci Lett 5:337–344

    Article  PubMed  Google Scholar 

  • Kovács GL, Vécsei L, Telegdy G (1978) Opposite action of oxytocin to vasopressin in passive avoidance behavior in rats. Physiol Behav 20:801–802

    Article  PubMed  Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG, De Kloet ER, De Wied D (1979) Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res 175:303–314

    Article  PubMed  Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG (1980) The interaction of posterior pituitary neuropeptides with monoaminergic neurotransmission: significance in learning and memory processes. Prog Brain Res 53:123–140

    Article  PubMed  Google Scholar 

  • Kovács GL, Szontágh L, Baláspiri L, Hódi K, Bohus P, Telegdy G (1981) On the mode of action of an oxytocin derivative (Z-Pro-D-Leu) on morphine dependence in mice. Neuropharmacology 20:647–651

    Article  PubMed  Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG, Telegdy G, De Wied D (1982 a) Neurohypophyseal hormones and memory. In: Yoshida H, Hagihara Y, Ebashi S (eds) Advances in pharmacology and therapeutics II, vol 1. CNS pharmacology. Neuropeptides, Pergamon, Oxford, pp 175–187

    Google Scholar 

  • Kovács GL, Buijs RM, Bohus B, Van Wimersma Greidanus TJB (1982 b) Microinjection of arginine8-vasopressin antiserum into the dorsal hippocampus attenuates passive avoidance behavior in rats. Physiol Behav 28:45–48

    Article  PubMed  Google Scholar 

  • Kovács GL, Ribárszki Z, Telegdy G (1983 a) Reversal of electroconvulsive shock-induced amnesia by neuropeptides. In: Endröczi E, De Wied D, Angelucci L, Scapagnini U (eds) Neuropeptides and psychosomatic processes. Akadémiai Kiadó, Budapest, pp 167–174

    Google Scholar 

  • Kovács GL, Acsai L, Tihanyi A, Faludi M, Telegdy G (1983 b) Influence of Z-prolyl-D- leucine on α-MPT-induced catecholamine utilization in specific mouse brain nuclei. Pharmacol Biochem Behav 18:345–349

    Article  PubMed  Google Scholar 

  • Kovács GL, Acsai L, Tihanyi A, Telegdy G (1983 c) Catecholamine utilization in distinct mouse brain nuclei during acute morphine treatment, morphine tolerance and withdrawal syndrome. Eur J Pharmacol 93:149–158

    Article  PubMed  Google Scholar 

  • Kovács GL, Izbáki F, Horváth Z, Telegdy G (1984 a) Effects of oxytocin and a derivative (Z-prolyl-D-leucine) on morphine tolerance/dependence are mediated by the limbic system. Behav Brain Res 14:1–8

    Article  PubMed  Google Scholar 

  • Kovács GL, Schwarzberg H, Veldhuis HD, Telegdy G (1984 b) Influences of oxytocin on behavioral processes: role of monoaminergic neurotransmission. Acta Physiol Hung 63:249

    Google Scholar 

  • Kovács GL, Horváth Z, Falkay G (1984 c) Brain dopamine and neuropeptide interactions in narcotic addiction: I. The role of pre- and postsynaptic receptors. Annual meeting of the Hungarian physiological society, Szeged, July 5–7, 1984, p 55

    Google Scholar 

  • Kovács GL, Telegdy G, Hódi K (1984d) Drugs affecting brain dopamine interfere with the effect of Z-prolyl-D-leucine on morphine withdrawal. Pharmacol Biochem Behav 21:345–348

    Article  PubMed  Google Scholar 

  • Kovács GL, Borthaiser Z, Telegdy G (1985 a) Oxytocin reduces heroin self-administration in heroin-tolerant rats. Life Sci 37:17–26

    Article  PubMed  Google Scholar 

  • Kovács GL, Horváth Z, Sarnyai Z, Faludi M, Telegdy G (1985 b) Oxytocin and a C-terminal derivative (Z-prolyl-D-leucine) attenuate tolerance to and dependence on morphine and interact with dopaminergic neurotransmission in the mouse brain. Neuropharmacology 24:413–419

    Article  PubMed  Google Scholar 

  • Kovács GL, Telegdy G, Laczi F, László F (1985 c) Oxytocin and vasopressin in memory and amnesia. In: Will BE, Schmitt P, Dalrymple-Alford JC (eds) Brain plasticity, learning, and memory. Plenum, New York, pp 297–301

    Google Scholar 

  • Kovács GL, Vecsernyés M, Laczi F, Faludi M, Telegdy G, László FA (1985 d) Acute morphine treatment and morphine tolerance/dependence alter immunoreactive oxytocin levels in the mouse hippocampus. Brain Res 328:158–160

    Article  PubMed  Google Scholar 

  • Kozlowski GP, Nilaver G, Zimmermann EA (1983) Distribution of neurohypophyseal hormones in the brain. Pharmacol Ther 21:325–349

    Article  PubMed  CAS  Google Scholar 

  • Krivoy WA, Zimmermann E, Lande S (1974) Facilitation of development of resistance to morphine analgesia by desglycinamide9-lysine vasopressin. Proc Natl Acad Sci (USA) 71:1852–1856

    Article  CAS  Google Scholar 

  • Kruse H, Van Wimersma Greidanus TJB, De Wied D (1977) Barrel rotation by vasopressin and related peptides in rats. Pharmacol Biochem Behav 7:311–313

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, McGaugh JL (1972) Effects of electroconvulsive shock and brain stimulation on EEG cortical theta rhythms in rats. Behav Biol 7:271–278

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, McGaugh JL, Tusa RJ (1972) Theta rhythm: a temporal correlate of memory storage processes in the rat. Science 175:87–89

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Ritzmann RF, Fields JZ (1984) Cyclo(leu-gly) has opposite effects on D-2 dopamine receptors in different brain areas. Peptides 5:7–10

    Article  PubMed  CAS  Google Scholar 

  • Le Douarin C, Fage D, Scatton B (1984) Effects of cyclo(leu-gly) on neurochemical indices of striatal dopaminergic supersensitivity induced by prolonged haloperidol treatment. Life Sci 34:393–399

    Article  PubMed  Google Scholar 

  • Le Piane FG, Phillips AG (1978) Differential effects of electrical stimulation of the amygdala, caudate-putamen or substantia nigra pars compacta on taste aversion and passive avoidance in rats. Physiol Behav 21:979–985

    Article  Google Scholar 

  • Maroli AN, Tsang WK, Stutz RM (1978) Morphine and self-stimulation: evidence for action on a common neural substrate. Pharmacol Biochem Behav 8:119–123

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (1966) Time-dependent processes in memory storage. Science 153:1351–1358

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL (1973) Drug facilitation of learning and memory. Ann Rev Pharmacol 13:229–241

    Article  PubMed  CAS  Google Scholar 

  • McGaugh JL, Dawson RG (1971) Modification of memory storage processes. In: Honig WK, James PHR (eds) Animal memory. Academic, New York, pp 215–242

    Google Scholar 

  • McGaugh JL, Gold PE, Handwerker MJ, Jensen RA, Martinez JL, Meligeni JA, Vasquez BJ (1979) Altering memory by electrical and chemical stimulation of the brain. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from single neuron to man. IBRO Monograph Series, vol 4. Raven, New York, pp 151–164

    Google Scholar 

  • Meisenberg G (1981) Short-term behavioral effects of posterior pituitary peptides in mice. Peptides 2:1–8

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg G (1982) Short-term behavioural effects of neurohypophyseal hormones: pharmacological characteristics. Neuropharmacology 21:309–316

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg G, Simmons WH (1982) Behavioral effects of intracerebroventricularly administered neurohypophyseal hormone analogs in mice. Pharmacol Biochem Behav 16:819–825

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg G, Simmons WH (1984 a) Amastatin potentiates the behavioral effects of vasopressin and oxytocin in mice. Peptides 5:535–539

    Article  PubMed  CAS  Google Scholar 

  • Meisenberg G, Simmons WH (1984 b) Factors involved in the inactivation of vasopressin after intracerebroventricular injection in mice. Life Sci 34:1231–1240

    Article  PubMed  CAS  Google Scholar 

  • Mens WBJ, Van Egmond MA, De Rotte AA, Van Wimersma Greidanus TJB (1982) Neurohypophyseal peptide levels in CSF and plasma during passive avoidance behavior in rats. Horm Behav 16:371–382

    Article  PubMed  CAS  Google Scholar 

  • Mens WBJ, Witter A, Van Wimersma Greidanus TJB (1983) Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these peptides from CSF. Brain Res 262:143–149

    Article  PubMed  CAS  Google Scholar 

  • Moos F, Richard P (1983) Serotonergic control of oxytocin release during suckling in the rat: opposite effects in conscious and anesthetized rats. Neuroendocrinology 36:300–306

    Article  PubMed  CAS  Google Scholar 

  • Nair RMG, Kastin AJ, Schally AV (1971) Isolation and structure of hypothalamic MSH release-inhibiting hormone. Biochem Biophys Res Commun 43:1376–1381

    Article  PubMed  CAS  Google Scholar 

  • Obrist P, Webb RA, Sutterer JR, Howard JL (1970) The cardiac-somatic relationship: some reformulations. Psychophysiology 6:569–587

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M, Browstein M (1983) Extrahypothalamic distribution and action of hypothalamic hormones. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psycho-pharmacology, vol 16, Neuropeptides, Plenum, New York, pp 467–487

    Chapter  Google Scholar 

  • Pedersen CA, Prange AJ (1979) Induction of maternal behavior in virgin rats after intrace- rebroventricular administration of oxytocin. Proc Natl Acad Sci (USA) 76:6661–6665

    Article  CAS  Google Scholar 

  • Pedersen CA, Ascher JA, Monroe YL, Prange AJ (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216:648–650

    Article  PubMed  CAS  Google Scholar 

  • Pedersen CA, Caldwell JD, Prange AJ (1984) Oxytocin antiserum inhibits the onset of ovarian steroid-induced maternal behavior. Symposium on Oxytocin, Lac Beauport, Canada

    Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioural despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    PubMed  CAS  Google Scholar 

  • Quartermain D, Freedman LS, Botwinick CY, Gutwein BM (1977) Reversal of cyclohex- imide-induced amnesia by adrenergic receptor stimulation. Pharmacol Biochem Behav 7:259–267

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Perlow MJ, Artman HG, Ungerleider LG; Fisher DA, Klein DC (1984) The circadian rhythm of oxytocin in primate cerebrospinal fluid: effects of destruction of the suprachiasmatic nuclei. Brain Res 307:384–387

    Article  PubMed  CAS  Google Scholar 

  • Rigter H, Van Riezen H (1978) Hormones and memory. In: Lipton MA, De Mascio A, Killam AF (eds) Psychopharmacology: a generation of progress. Raven, New York, pp 677–689

    Google Scholar 

  • Rigter H, Van Riezen H, De Wied D (1974) The effects of ACTH- and vasopressin-ana- logues on CO2-induced retrograde amnesia in rats. Physiol Behav 13:381–388

    Article  PubMed  CAS  Google Scholar 

  • Rigter H, Rijk H, Crabbe JC (1980) Tolerance to ethanol and the severity of withdrawal in mice are enhanced by a vasopressin fragment. Eur J Pharmacol 64:53–68

    Article  PubMed  CAS  Google Scholar 

  • Ritzmann RF, Walter R, Bhargava HN, Krivoy W (1980) The inhibition of the development of tolerance to and dependence on morphine by peptides. In: Ajmone Marsan C, Traczyk WZ (eds) Neuropeptides and neural transmission. Raven, New York, pp 237–244

    Google Scholar 

  • Ritzmann RF, Colbern DL, Zimmermann EG, Krivoy W (1984) Neurohypophyseal hormones in tolerance and physical dependence. Pharmacol Ther 23:281–312

    Article  Google Scholar 

  • Robinson AG, Zimmermann EA (1973) Cerebrospinal fluid and ependymal neurophysin. J Clin Invest 52:1260–1267

    Article  PubMed  CAS  Google Scholar 

  • Robinson ICAF, Jones PM (1982) Neurohypophyseal peptides in cerebrospinal fluid: recent studies. In: Baertschi AJ, Dreifuss JJ (eds) Neuroendocrinology of vasopressin, corticoliberin and opiomelanocortins. Academic, London, pp 21–31

    Google Scholar 

  • Rubin BS, Menniti FS, Bridges RS (1983) Intracerebroventricular administration of oxytocin and maternal behavior in rats after prolonged and acute steroid pretreatment. Horm Behav 17:45–53

    Article  PubMed  CAS  Google Scholar 

  • Sahgal A, Wright C (1984) Choice, as opposed to latency, measures in avoidance suggest that vasopressin and oxytocin do not affect memory in rats. Neurosci Lett 48:299–304

    Article  PubMed  CAS  Google Scholar 

  • Sahgal A, Keith AB, Wright C, Edwardson JA (1982) Failure of vasopressin to enhance memory in a passive avoidance task in rats. Neurosci Lett 28:87–92

    Article  PubMed  CAS  Google Scholar 

  • Sara SJ, Barnett J, Toussaint P (1982) Vasopressin accelerates appetitive discrimination learning and impairs its reversal. Behav Proc 7:157–167

    Article  CAS  Google Scholar 

  • Schmidt WK, Holaday JW, Loh HH, Way EL (1978) Failure of vasopressin and oxytocin to antagonize acute morphine antinociception or facilitate narcotic tolerance development. Life Sci 23:151–158

    Article  PubMed  CAS  Google Scholar 

  • Schulz H, Kovács GL, Telegdy G (1974) Effect of physiological doses of vasopressin and oxytocin on avoidance and exploratory behaviour in rats. Acta Physiol Hung 45:211–215

    CAS  Google Scholar 

  • Schulz H, Kovács GL, Telegdy G (1976) The effect of vasopressin and oxytocin on avoidance behavior in rats. In: Endröczi E (ed) Cellular and molecular bases of neuroendocrine processes. Akadémiai Kiadó, Budapest, pp 555–564

    Google Scholar 

  • Schulz H, Kovács GL, Telegdy G (1979) Action of posterior pituitary neuropeptides on the nigro-striatal dopaminergic system. Eur J Pharmacol 57:185–190

    Article  PubMed  CAS  Google Scholar 

  • Schwarzberg H, Unger H (1970) Änderung der Reaktionszeit von Ratten nach Applikation von Vasopressin, Oxytocin und Na-thioglykolat. Acta Biol Med Germ 24:507–516

    PubMed  CAS  Google Scholar 

  • Schwarzberg H, Hartmann G, Kovács GL, Telegdy G (1976) The effect of intraventricular administration of oxytocin and vasopressin on self-stimulation in rats. Acta Physiol Hung 47:127–131

    CAS  Google Scholar 

  • Schwarzberg H, Betschen K, Unger H, Schulz H (1978) Beeinflussung der hypothalami- schen Selbststimulation durch intrazerebroventriculär verabreichtes Vasopressin und Oxytocin. Acta Biol Med Germ 37:1295–1296

    PubMed  CAS  Google Scholar 

  • Schwarzberg H, Kovács GL, Szabô G, Telegdy G (1981) Intraventricular administration of vasopressin and oxytocin affects the steady-state levels of serotonin, dopamine and norepinephrine in rat brain. Endocrinol Exp (Bratisl) 15:75–80

    CAS  Google Scholar 

  • Schwarzberg H, Kovács GL, Telegdy G (1984) The influence of oxytocin on the steady-state level and accumulation of serotonin in rat brain regions. Neuropeptides 4:145–156

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1975) Evidence from rats that morphine tolerance is a learned response. J Comp Physiol Psychol 89:498–506

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1976) Morphine analgesic tolerance: its situation specificity supports a Pavlovian conditioning model. Science 193:323–325

    Article  PubMed  CAS  Google Scholar 

  • Siegel S (1978) Tolerance to the hypothermic effect of morphine in the rat is a learned response. J Comp Physiol Psychol 92:1137–1149

    Article  PubMed  CAS  Google Scholar 

  • Silverman AJ, Oldenfield BJ (1984) Synaptic input to vasopressin neurons of the paraventricular nucleus (PVN). Peptides 5:139–150

    Article  PubMed  CAS  Google Scholar 

  • Singhal RL, Rastogi RB (1982) MIF-1: effects on norepinephrine, dopamine and serotonin metabolism in certain discrete brain regions. Pharmacol Biochem Behav 16:229–233

    Article  PubMed  CAS  Google Scholar 

  • Sladek JR, Fields J, Phelps CJ, Khachaturian H (1984) Development of the catecholamine innervation of the supraoptic nucleus in the Brattleboro rat. Peptides 5 [Suppl 1]:151–155

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV (1983) Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends Neurosci 6:467–472

    Article  CAS  Google Scholar 

  • Sterba G (1974) Ascending neurosecretory pathways of the peptidergic type. In: Knowles F, Vollrath L (eds) Neurosecretion - the final neurosecretory pathway. Springer, Berlin Heidelberg New York, pp 38–47

    Google Scholar 

  • Sterba G, Naumann W, Hoheisel G (1980) Exohypothalamic axons of the classical neurosecretory system and their synapses. In: McConnell PS, Boer GJ, Romijn HJ, Van de Poll NE, Corner MA (eds) Adaptive capabilities of the nervous system. Prog Brain Res 53:141–158

    Google Scholar 

  • Strupp B, Weingartner H, Goodwin FK, Gold PW (1984) Neurohypophyseal hormones and cognition. Pharmacol Ther 23:267–279

    Article  Google Scholar 

  • Swanson HH, Bolwerk E (1984) Does oxytocin play a role in the onset of maternal behaviour? J Steroid Biochem 20:1510

    Article  Google Scholar 

  • Swanson LW, Sawchenko PE (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Ann Rev Neurosci 6:269–324

    Article  PubMed  CAS  Google Scholar 

  • Szabó G, Kovács GL, Baláspiri L, Telegdy G (1981) Dose-related effect of the oxytocin fragment prolyl-leucyl-glycinamide on α-MPT-induced catecholamine disappearance and serotonin levels in rat brain. Neurochem Int 3:411–416

    Article  PubMed  Google Scholar 

  • Szabó G, Kovács GL, Telegdy G (1983) The effect of oxytocin and an oxytocin fragment (prolyl-leucyl-glycinamide) on the development of ethanol tolerance. Acta Endocrinol 103 [Suppl 256]:242

    Google Scholar 

  • Szabó G, Kovács GL, Telegdy G (1984) The effect of oxytocin and two of its fragments on ethanol tolerance in mice. J Steroid Biochem 20:1512

    Article  Google Scholar 

  • Szabó G, Kovács GL, Székeli S, Baláspiri L, Telegdy G (1985) C-terminal fragments of oxytocin (prolyl-leucyl-glycinamide and Z-prolyl-D-leucine) attenuate the development of tolerance to ethanol. Acta Physiol Hung (in press)

    Google Scholar 

  • Székely JI, Miglécz E, Dunai-Kovács Z, Tarnawa I, Rónai AZ, Gráf L, Bajusz S (1979) Attenuation of morphine tolerance and dependence by α-melanocyte-stimulating hormone (α-MSH). Life Sci 24:1931–1938

    Article  PubMed  Google Scholar 

  • Tabakoff B, Ritzmann RF (1977) The effect of 6-hydroxydopamine on tolerance to and dependence on ethanol. J Pharmacol Exp Ther 203:319–321

    PubMed  CAS  Google Scholar 

  • Tanaka M, Versteeg DHG, De Wied D (1977) Regional effects of vasopressin on rat brain catecholamine metabolism. Neurosci Lett 4:321–325

    Article  PubMed  CAS  Google Scholar 

  • Telegdy G, Kovács GL (1979 a) Role of monoamines in mediating the action of hormones on learning and memory. In: Brazier MAB (ed) Brain mechanisms in memory and learning: from single neuron to man. IBRO Monograph Series, vol 4. Raven, New York, pp 249–268

    Google Scholar 

  • Telegdy G, Kovács GL (1979 b) Role of monoamines in mediating the action of ACTH; vasopressin and oxytocin. In: Collu R, Barbeau A, Ducharme JR, Rochefort JG (eds) Central nervous system effects of hypothalamic hormones and other peptides. Raven, New York, pp 189–205

    Google Scholar 

  • Thompson T, Pickens R (1975) An experimental analysis of behavioral factors in drug dependence. Fed Proc 34:1759–1770

    PubMed  CAS  Google Scholar 

  • Tindal JS (1974) Stimuli that cause the release of oxytocin. In: Knobil E, Sawyer WH (eds) The pituitary gland and its neuroendocrine control, part 1. American Physiological Society, Washington, pp 257–267 (Handbook of physiology, vol 4, sect 7: Endocrinology)

    Google Scholar 

  • Unger H (1977) Funktionelle Aspekte der Informationsübermittelung durch die Oligopeptide Vasopressin und Oxytocin bei Säugetieren. Sitzungsberichte der Akademie der Wissenschaften der DDR, Berlin, DDR, 5:62–83

    Google Scholar 

  • Ungerstedt U, Ljungberg T, Schultz W (1978) Dopamine receptor mechanisms: behavioral and electrophysiological studies. In: Roberts JL, Woodruff GN, Iversen LL (eds) Advances in biochemical pharmacology, vol 19. Raven, New York, pp 311–321

    Google Scholar 

  • Urban IJA (1981) Intraseptal administration of vasopressin and oxytocin affects hippocampal electroencephalogram in rat. Exp Neurol 73:131–147

    Article  Google Scholar 

  • Van Heuven-Nolsen D, Versteeg DHG (1985) Interaction of vasopressin with the nigro-striatal dopamine system: site and mechanism of action. Brain Res 337:269–276

    Article  PubMed  Google Scholar 

  • Van Heuven-Nolsen D, De Kloet ER, Versteeg DHG (1984 a) Oxytocin affects noradrenaline utilization in distinct limbic-forebrain regions of the rat brain. Neuropharmacology 23:269–276

    Article  Google Scholar 

  • Van Heuven-Nolsen D, De Kloet ER, Versteeg DHG (1984 b) Pro-Leu-GlyNH2 affects dopamine and noradrenaline utilization in rat limbic-forebrain nuclei. Brain Res 322:213–218

    Article  PubMed  Google Scholar 

  • Van Ree JM (1982) Neurohypophyseal hormones and addiction. In: Yoshida H, Hagihara Y, Ebashi S (1982) Advances in pharmacology and therpeutics II, vol 1. CNS pharmacology. Neuropeptides. Pergamon, Oxford, pp 199–209

    Google Scholar 

  • Van Ree JM (1983) Neuropeptides and addictive behaviour. Alcohol Alcoholism 18:325–330

    Google Scholar 

  • Van Ree JM, De Wied D (1976) Prolyl-leucyl-glycinamide (PLG) facilitates morphine dependence. Life Sci 19:1331–1339

    Article  PubMed  Google Scholar 

  • Van Ree JM, De Wied D (1977 a) Modulation of heroin self-administration by neurohypophyseal principles. Eur J Pharmacol 43:199–202

    Article  PubMed  Google Scholar 

  • Van Ree JM, De Wied D (1977 b) Heroin self-administration is under control of vasopressin. Life Sci 21:315–320

    Article  PubMed  Google Scholar 

  • Van Wimersma Greidanus TJB, Dogterom J, De Wied D (1975) Intraventricular administration of anti-vasopressin serum inhibits memory consolidation of rats. Life Sci 16:637–644

    Google Scholar 

  • Van Wimersma Greidanus TJB, Van Ree JM, Versteeg DHG (1980) Neurohypophyseal peptides and avoidance behavior: the involvement of vasopressin and oxytocin in memory processes. In: Ajmone Marsan C, Traczyk WZ (eds) Neuropeptides and neural transmission. Raven, New York, pp 293–300

    Google Scholar 

  • Van Wimersma Greidanus TJB, Bohus B, Kovács GL, Versteeg DHG, Burbach JHP, De Wied D (1983) Sites of behavioral and neurochemical action of ACTH-like peptides and neurohypophyseal hormones. Neurosci Biobehav Rev 7:453–463

    Article  PubMed  Google Scholar 

  • Versteeg DHG (1983) Neurohypophyseal hormones and brain neurochemistry. Pharmacol Ther 19:297–325

    Article  CAS  Google Scholar 

  • Versteeg DHG, Tanaka M, De Kloet ER, Van Ree JM, De Wied D (1978) Prolyl-leucyl- glycinamide (PLG): regional effects on α-MPT-induced catecholamine disappearance in rat brain. Brain Res 143:561–566

    Article  PubMed  CAS  Google Scholar 

  • Walter R, Hoffmann PL, Flexner JB, Flexner LB (1975) Neurohypophyseal hormones, analogs and fragments: their effect on puromycin-induced amnesia. Proc Natl Acad Sci (USA) 72:4180–4184

    Article  CAS  Google Scholar 

  • Walter R, Van Ree JM, De Wied D (1978) Modification of conditioned behavior of rats by neurohypophyseal hormones and analogues. Proc Natl Acad Sci (USA) 75:2493–2496

    Article  CAS  Google Scholar 

  • Way EL, Rezvani A (1984) Opiate tolerance and physical dependence: assessment and mechanisms. In: Hughes J, Collier HOJ, Rance MJ, Tyers MB (eds) Opioids past, present and future. Taylor and Francis, London, pp 103–108

    Google Scholar 

  • Wikler A (1980) Opioid dependence. Mechanism and treatment. Plenum, New York

    Google Scholar 

  • Xiao X, Veldhuis HD, Van Ree JM (1984) Neuropeptides related to neurohypophyseal hormones interfere with apomorphine-induced behavioral changes. Neuropeptides 4:237–245

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kovács, G.L. (1986). Oxytocin and Behavior. In: Ganten, D., Pfaff, D. (eds) Neurobiology of Oxytocin. Current Topics in Neuroendocrinology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70414-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70414-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70416-1

  • Online ISBN: 978-3-642-70414-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics