Skip to main content

Proteolytic Conversion of Oxytocin, Vasopressin, and Related Peptides in the Brain

  • Chapter

Part of the book series: Current Topics in Neuroendocrinology ((CT NEUROENDOCRI,volume 6))

Abstract

The nonapeptides oxytocin and vasopressin (arginine-vasopressin or lysine-vasopressin) have dual functions: they are hormones in the periphery and neuropeptides in the brain. As hormones they serve the organism by controlling peripheral functions, e.g., maintenance of water balance and blood pressure, and participate in parturition and lactation. As neuropeptides they play a role in the regulation of memory processes (De Wied 1965, 1971, 1976, 1980, 1983), body temperature (Cooper et al. 1979; Veale et al. 1981; Kasting et al. 1980), blood pressure (Versteeg et al. 1983; Feuerstein et al. 1984), brain development (Boer et al. 1980; Boer 1984), maternal behavior (Pedersen and Prange 1979; Pedersen et al. 1982), sexual behavior (Bohus 1977; Södersten et al. 1983), and development of tolerance and addiction to narcotic drugs (Van Ree and De Wied 1981; Van Ree 1982; Hoffman 1982). In addition, they may have paracrine functions in peripheral tissues such as the ovary, testis, and adrenal gland (Wathes and Swann 1982; Nicholson et al. 1984; Ang and Jenkins 1984; Lim et al. 1984).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham GN, Podell DN (1981) Pyrolutamic acid. Mol Cell Biochem 38:181–190

    PubMed  CAS  Google Scholar 

  • Acher R (1981) Evolution of neuropeptides. TINS 4:225–229

    CAS  Google Scholar 

  • Ader R, De Wied D (1972) Effects of lysine vasopressin on passive avoidance learning. Psych Sci 29:46–48

    Google Scholar 

  • Ader B, Weijnen JAWM, Moleman P (1972) Retention of a passive avoidance response as a function of the intensity and duration of electric shock. Psych Sci 26:125–128

    Google Scholar 

  • Ang VTY, Jenkins JS (1984) Neurohypophysial hormones in the adrenal medulla. J Clin Endocrinol Metab 58:688–691

    PubMed  CAS  Google Scholar 

  • Bickel M, Kuhl H, Sioe Eng Tan J, Taubert HD (1972) Evidence of a sex-specific effect of testosterone and progesterone upon L-cystine aminopeptidase activity in the hypothalamus and paleopallium of the rat. Neuroendocrinology 9:321–331

    PubMed  CAS  Google Scholar 

  • Biegon A, Terlou M, Voorhuis ThD, De Kloet ER (1984) Arginine vasopressin bindings sites in rat brain: A quantitative autoradiographic study. Neurosci Lett 44:229–234

    PubMed  CAS  Google Scholar 

  • Boer GJ (1984) Vasopressin and brain development: Studies using the Brattleboro rat. Peptides (in press)

    Google Scholar 

  • Boer GJ, Swaab DF, Uylings HBM, Boer K, Buijs RM, Velis DN (1980) Neuropeptides in rat brain development. Prog Brain Res 53:202–227

    Google Scholar 

  • Bohus B (1977) Effect of desglycinamide-lysine vasopressin (DG-LVP) on sexually motivated T-maze behavior in the male rat. Horm Behav 8:52–61

    PubMed  CAS  Google Scholar 

  • Branda LA, Ferrier BM (1971) Degradation of oxytocin by human placental tissue. Am J Obstet Gynecol 109:943–947

    PubMed  CAS  Google Scholar 

  • Brinton RE, Wamsley JK, Gee KW, Wan YP, Yamamura HI (1984 a) 3H-Oxytocin binding sites in the rat brain demonstrated by quantitative light microscopic autoradiography. Eur J Pharmacol 102:365–367

    PubMed  CAS  Google Scholar 

  • Brinton RE, Gee KW, Wamsley JK, Davis TP, Yamamura HI (1984 b) Regional distribution of putative vasopressin receptors in rat brain and pituitary by quantitative autoradiography. Proc Natl Acad Sci USA 81:7248–7252

    PubMed  CAS  Google Scholar 

  • Buijs RM (1978) Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat: pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192:423–435

    PubMed  CAS  Google Scholar 

  • Buijs RM, De Vries GJ, Van Leeuwen FW, Swaab DF (1983) Vasopressin and oxytocin distribution and putative functions in the brain. Prog Brain Res 60:115–122

    PubMed  CAS  Google Scholar 

  • Burbach JPH (1980) Proteolytic conversion of ß-endorphin and oxytocin in rat brain. Thesis, University of Utrecht

    Google Scholar 

  • Burbach JPH (1984) Action of proteolytic enzymes on lipotropins and endorphins: Biosynthesis, biotransformation, and fate. Pharmacol Ther 24:321–354

    PubMed  CAS  Google Scholar 

  • Burbach JPH, De Wied D (1981) Memory effects and brain proteolysis of neurohypophyseal hormones. In: Schlesinger DM (ed) Neurohypophyseal peptide hormones and other biologically active peptides. Elsevier/North-Holland Biomedical, Amsterdam, pp 69–87

    Google Scholar 

  • Burbach JPH, De Kloet ER (1982) Proteolysis of β-endorphin in brain tissue. Peptides 3:451–453

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Lebouille JLM (1983) Proteolytic conversion of arginine-vasopressin and oxytocin by brain synpatic membranes. Characterization of formed peptides and mechanism of proteolysis. J Biol Chem 258:1487–1494

    PubMed  CAS  Google Scholar 

  • Burbach JPH, De Kloet ER, De Wied D (1980 a) Oxytocin biotransformation in the rat limbic brain: characterization of peptidase activities and significance in the formation of oxytocin fragments. Brain Res 202:401–414

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Loeber JG, Verhoef J, Wiegant VM, De Kloet ER, De Wied D (1980 b) Selective conversion of β-endorphin into peptides related to γ- and α-endorphin. Nature 282:96–97

    Google Scholar 

  • Burbach JPH, Schotman P, De Kloet ER (1980 c) Oxytocin biotransformation in the rat limbic brain: Chemical characterization of two oxytocin fragments and proposed pathway for oxytocin conversion. Biochem Biophys Res Commun 97:1005–1013

    PubMed  CAS  Google Scholar 

  • Burbach JPH, De Kloet ER, Schotman P, De Wied D (1981) Proteolytic conversion of ß- endorphin by brain synaptic membranes: characterization of generated β-endorphin fragments and proposed metabolic pathway. J Biol Chem 256:12463–12469

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Wang X-C, Van Ittersum M (1982) Difference in susceptibility of arginine- vasopressin and oxytocin to aminopeptidase activity in brain membranes. Biochem Biophys Res Commun 108:1165–1171

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Bohus B, Kovács GL, Van Nispen JW, Greven HM, De Wied D (1983 a) Oxytocin is a precursor of potent behaviourally active neuropeptide. Eur J Pharmacol 94:125–131

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Kovács GL, De Wied D, Van Nispen JW, Greven HM (1983 b) A major metabolite of arginine-vasopressin in the brain is a highly potent neuropeptide. Science 221:1310–1312

    PubMed  CAS  Google Scholar 

  • Burbach JPH, Kovács GL, Wang X-C, De Wied D (1983 c) Metabolites of arginine-vasopressin and oxytocin are highly potent neuropeptides in the brain. In: Koch G, Richter D (eds) Biochemical and clinical aspects of neuropeptides: biosynthesis, processing and gene structure. Academic, New York, pp 211–224

    Google Scholar 

  • Burbach JPH, Lebouille JLM, Wang X-C (1984 a) Proteolytic conversion of neuropeptides into active fragments. In: Vizi ES, Magyar K (eds) Regulation of transmitter function: basic and clinical aspects. Akademiai Kiado, Budapest, pp 237–247

    Google Scholar 

  • Burbach JPH, Wang X-C, Ten Haaf JA, De Wied D (1984 b) Substances resembling C-terminal vasopressin fragments are present in the brain but not in the pituitary gland. Brain Res 306:384–387

    PubMed  CAS  Google Scholar 

  • Carraway R, Leeman SE (1975) The amino acid sequence of a hypothalamic peptide neurotensin. J Biol Chem 250:1907–1911

    PubMed  CAS  Google Scholar 

  • Celis ME (1975) Serum MSH levels and the hypothalamic enzymes involved in the formation of MSH-RF during the estrous cycle in the rat. Neuroendocrinology 18:256–262

    PubMed  CAS  Google Scholar 

  • Celis ME, Taleisnik S (1971 a) Formation of a melanocyte-stimulating hormone release inhibiting factor by hypothalamic extracts from rats. Int J Neurosci 1:223–230

    PubMed  CAS  Google Scholar 

  • Celis ME, Taleisnik S (1971 b) In vitro formation of a MSH-releasing agent by hypothalamic extracts. Experientia 27:1481–1482

    PubMed  CAS  Google Scholar 

  • Celis ME, Taleisnik S (1974) Estrogen influence on the hypothalamic enzymes involved in the formation of melanocyte-stimulating hormone release-inhibiting factor (MSH-R- IF). Proc Soc Exp Biol Med 145:142–144

    PubMed  CAS  Google Scholar 

  • Celis ME, Taleisnik S, Walter R (1971) Regulation of formation and proposed structure of the factor inhibiting the release of melanocyte-stimulating hormone. Proc Natl Acad Sci USA 68:1428–1433

    PubMed  CAS  Google Scholar 

  • Constantini MG, Pearlmutter AF (1984) Properties of the specific binding sites for argi- nine-vasopressin in rat hippocampal synaptic membranes. J Biol Chem 259:11739–11745

    Google Scholar 

  • Cooper KE, Kasting NW, Lederis K, Veale WC (1979) Evidence supporting a role for vasopressin in natural suppression of fever in sheep. J Physiol (Lond) 295:33–45

    CAS  Google Scholar 

  • Dekanski J (1952) The quantitative assay of vasopressin. Br J Pharmacol 7:567–572

    CAS  Google Scholar 

  • De Kloet ER, Rotteveel F, Voorhuis ThAM, Terlou M (1985 a) Topography of binding sites for neurohypophyseal hormones in rat brain. Eur J Pharmacol 110:113–119

    PubMed  Google Scholar 

  • De Kloet ER, Voorhuis ThAM, Burbach JPH, De Wied D (1985 b) Autoradiographic localization of binding sites for the arginine-vasopressin metabolite AVP-(4–9) in rat brain. Neurosci Lett 56:7–11

    PubMed  Google Scholar 

  • Deslauriers R, Smith ICP (1970) Evidence from proton magnetic resonance data for the stacking of aromatic amino acids in lysine vasopressin: comparison with oxytocin derivatives and related peptides. Biochem Biophys Res Commun 40:179–185

    PubMed  CAS  Google Scholar 

  • De Wied D (1965) The influence of the posterior and intermediate lobe of the pituitary and pituitary peptides on the maintenance of a conditioned avoidance response in rats. Int J Neuropharmacol 4:157–167

    Google Scholar 

  • De Wied D (1969) Effects of peptide hormones on behavior. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Oxford University Press, Oxford, pp 97–140

    Google Scholar 

  • De Wied D (1971) Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature 232:58–60

    PubMed  Google Scholar 

  • De Wied D (1976) Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sci 19:685–690

    PubMed  Google Scholar 

  • De Wied D (1977) Peptides and behavior. Life Sci 20:195–204

    PubMed  Google Scholar 

  • De Wied D (1979) Neurohypophyseal hormones and memory. In: Laszlo FA (ed) Recent results in peptide hormones and androgenic steroid research. Akadémiai Kiadô, Budapest, pp 149–154

    Google Scholar 

  • De Wied D (1980) Behavioural actions of neurohypophyseal peptides. Proc R Soc Lond [Biol] 210:183–195

    Google Scholar 

  • De Wied D (1983) Central actions of neurohypophyseal hormones. Prog Brain Res 60:155–167

    PubMed  Google Scholar 

  • De Wied D, Bohus B (1978) The modulation of memory processes by vasotocin, the evolutionary oldest neurosecretory principle. Prog Brain Res 48:327–334

    PubMed  Google Scholar 

  • De Wied D, Greven HM, Lande S, Witter A (1972) Dissociation of the behavioural and endocrine effects of lysine vasopressin by tryptic digestion. Br J Pharmacol 45:118–122

    PubMed  Google Scholar 

  • De Wied D, Gaffori O, Van Ree JM, De Jong W (1984 a) Central target for the behavioural effects of vasopressin neuropeptides. Nature 308:276–278

    PubMed  Google Scholar 

  • De Wied D, Gaffori O, Van Ree JM, De Jong W (1984 b) Vasopressin antagonists block peripheral as well as central vasopressin receptors. Pharmacol Biochem Behav 21:393–400

    PubMed  Google Scholar 

  • De Wildt D, Verhoef J, Witter A (1982) H-Pro-[3H]Leu-Gly-NH2: Uptake and metabolism in rat brain. J Neurochem 38:67–74

    PubMed  Google Scholar 

  • Docherty K, Steiner DF (1982) Post-translational proteolysis in polypeptide hormone biosynthesis. Ann Rev Physiol 44:624–638

    Google Scholar 

  • Dorsa DM, Majumbar LA, Petracca FM, Baskin DG, Cornett LE (1983) Characterization and localization of 3H-arginine vasopressin binding to rat kidney and brain tissue. Peptides 4:699–704

    PubMed  CAS  Google Scholar 

  • Ferrier BM, Branda LA (1966) Plasma oxytocinase. Proceedings of the 3rd international pharmacological congress, Sao Paulo, p 179

    Google Scholar 

  • Feuerstein G, Zerbe RL, Faden AL (1984) Central cardiovascular effects of vasotocin, oxytocin and vasopressin in conscious rats. J Pharmacol Exp Ther 228:348–358

    PubMed  CAS  Google Scholar 

  • Folkers K, Cheng J-K, Curry L, Bowers CY, Weil A, Schally AV (1970) Synthesis and relationship of L-glutaminyl-L-histidyl-L-prolinamide to the thyrotropin releasing hormone. Biochem Biophys Res Commun 39:110–113

    PubMed  CAS  Google Scholar 

  • Frith DA, Hooper KC (1971 a) The effect of coitus on the activity of certain enzymes in the female rabbit hypothalamus. Acta Endocrinol 66:213–220

    PubMed  CAS  Google Scholar 

  • Frith DA, Hooper KC (1971 b) The action of some ovulation inhibitors on the rabbit hypothalamus. Acta Endocrinol 66:221–228

    PubMed  CAS  Google Scholar 

  • Frith DA, Hooper KC (1975) The development of an in vitro system for estimating oxytocinase in the rabbit hypothalamus and the effects of some protein synthesis inhibitors and oestradiol-17β on enzyme activity. Acta Endocrinol 75:443–451

    Google Scholar 

  • Gaffori O, Burbach JPH, Kovács GL, Van Ree JM, De Wied D (1985) Structure activity relationship studies with C-terminal fragments of vasopressin and oxytocin on avoidance behavior. Submitted

    Google Scholar 

  • Ganten D, Hermann K, Bayer C, Unger Th, Lang RE (1983) Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221:869–871

    PubMed  CAS  Google Scholar 

  • Grant NH, Clark DE, Rosanoff EI (1973) Evidence that Pro-Leu-Gly-NH2, tocinoic acid and des-Cys-tocinoic acid do not affect secretion of melanocyte-stimulating hormone. Biochem Biophys Res Commun 51:100–106

    PubMed  CAS  Google Scholar 

  • Griffith EC, Hooper KC (1972 a) The effect of ovariectomy on the activity of certain enzymes in the female rat hypothalamus. Acta Endocrinol 69:249–256

    Google Scholar 

  • Griffith EC, Hooper KC (1972 b) The effect of neonatal androgen on the activity of certain enzymes-in the rat hypothalamus. Acta Endocrinol 70:767–774

    Google Scholar 

  • Griffith EC, Hooper KC (1973 a) The effects of orchidectomy and testosterone propionate injection on peptidase activity in the male rat hypothalamus. Acta Endocrinol 72:1–8

    Google Scholar 

  • Griffith EC, Hooper KC (1973 b) Peptidase activity in the hypothalami of rats treated neonatally with oestrogens. Acta Endocrinol 72:9–17

    Google Scholar 

  • Griffith EC, Hooper KC (1973 c) Changes in hypothalamic peptidase activity during the estrous cycle in the adult female rat. Acta Endocrinol 74:41–48

    Google Scholar 

  • Griffith EC, Hooper KC (1973 d) The stimulating influence of gonadal steroids and meta- libine (ICI 33,828) on peptidase activity in the female rat hypothalamus. Fertil Steril 24:269–274

    Google Scholar 

  • Griffith EC, Hooper KC (1974) Competitive inhibition between oxytocin and LH-RH for the same enzyme system in the rat hypothalamus. Acta Endocrinol 75:435–442

    Google Scholar 

  • Griffith EC, Hooper KC, Hopkinson CRN (1973) Evidence for an enzymic component in the rat hypothalamus capable of inactivating luteinizing hormone releasing factor (LRF). Acta Endocrinol 74:49–55

    Google Scholar 

  • Heil H, Meitzer V, Kuhl H, Abraham R, Taubert HD (1971) Stimulation of L-cystine-ami- nopeptidase activity by hormonal steroids and steroid-analogs in the hypothalamus and other tissues of the female rat. Fertil Steril 22:181–187

    PubMed  CAS  Google Scholar 

  • Heller H, Urban FF (1935) The fate of the antidiuretic principle of postpituitary extracts in vivo and in vitro. J Physiol (Lond) 85:502–518

    CAS  Google Scholar 

  • Hoffman PL (1982) Structural requirements for neurohypophyseal peptide maintenance of ethanol tolerance. Pharmacol Biochem Behav 17:685–690

    PubMed  CAS  Google Scholar 

  • Hoffman PL, Walter R (1976) Preparation of oxytocin specifically 14C-labeled in the tyrosine residue. FEBS Lett 66:176–178

    PubMed  CAS  Google Scholar 

  • Hooper KC (1962) The catabolism of some physiologically active polypeptides by homog- enate of dog hypothalamus. Biochem J 83:511–517

    PubMed  CAS  Google Scholar 

  • Hooper KC (1963) The enzymic inactivation of some physiologically active polypeptides by different parts of the nervous system. Biochem J 88:399–404

    Google Scholar 

  • Hooper KC (1964) The distribution of hypothalamic peptidases in pregnant and non-pregnant dogs. Biochem J 90:584–587

    PubMed  CAS  Google Scholar 

  • Hooper KC (1966 a) Some observations on the behavior of hypothalamic enzymes during the time of blastocyst implantation in the rabbit. Biochem J 99:128–133

    PubMed  CAS  Google Scholar 

  • Hooper KC (1966 b) The metabolism of oxytocin during lactation in the rabbit. Biochem J 100:823–826

    PubMed  CAS  Google Scholar 

  • Hooper KC (1968) The effects of ovariectomy and injected oestradiol monobenzoate on polypeptide metabolism in the hypothalamus. Biochem J 110:151–153

    PubMed  CAS  Google Scholar 

  • Hui KS, Cheng K-P, Wang K-H, Salshutz M, Lajtha A (1980) Degradation of melanotropin inhibiting factor by brain. J Neurochem 35:471–478

    PubMed  CAS  Google Scholar 

  • Ivell R, Richter D (1984) Structure and comparison of the oxytocin and vasopressin genes from rat. Proc Natl Acad Sci USA 81:2006–2010

    PubMed  CAS  Google Scholar 

  • Joëls M, Urban IJA (1984) Arginine8-vasopressin enhances the responses of lateral septal neurons in the rat to excitatory amino acids and fimbriafornix stimuli. Brain Res 311:201–209

    PubMed  Google Scholar 

  • Kastin AJ, Laurence SP, Coy DH (1981 a) Radioimmunoassay of MIF-l/Tyr-MIF-l-like material in rat pineal. Pharmacol Biochem Behav 13:901–905

    Google Scholar 

  • Kastin AJ, Laurence SP, Coy DH (1981 b) Radioimmunoassayable N-Tyr-MIF-l-like activity in rat brain is increased by pinealectomy. Brain Res Bull 7:697–702

    PubMed  CAS  Google Scholar 

  • Kasting NW, Veale WL, Cooper KE (1980) Convulsive and hypothermic effects of vasopressin in the brain of the rat. Can J Physiol Pharmacol 58:316–319

    PubMed  CAS  Google Scholar 

  • Koida M, Walter R (1976) Post-proline cleaving enzyme: purification of this endopeptidase by affinity chromatography. J Biol Chem 251:7593–7599

    PubMed  CAS  Google Scholar 

  • Koida M, Glass JD, Schwartz IL, Walter R (1971) Mechanism of inactivation of oxytocin by rat kidney enzymes. Endocrinology 88:633–643

    PubMed  CAS  Google Scholar 

  • Kovács GL, De Wied D (1983) Hormonally active arginine-vasopressin suppresses endotoxin-induced fever in rats: lack of effect of oxytocin and a behaviorally active vasopressin fragment. Neuroendocrinology 37:258–261

    PubMed  Google Scholar 

  • Kovács GL, Bohus B, Versteeg DHG, Telegdy G, De Wied D (1982) Neurohypophyseal hormones and memory. In: Yoshida H, Hagihara Y, Ebashi S (eds) Advances in pharmacology and therapeutics II, vol 1. Pergamon, Oxford/New York, pp 175–187

    Google Scholar 

  • Kuhl H, Taubert HD (1975 a) Inactivation of luteinizing hormone releasing hormone by rat hypothalamic L-cystine arylamidase. Acta Endocrinol 78:634–648

    PubMed  CAS  Google Scholar 

  • Kuhl H, Taubert HD (1975 b) Short-loop feedback mechanism of luteinizing hormone: LH stimulates hypothalamic L-cystine arylamidase to inactivate LH-RH in the rat hypothalamus. Acta Endocrinol 78:649–663

    PubMed  CAS  Google Scholar 

  • Kuhl H, Rosniatowski C, Oen S-A, Taubert HD (1974 a) Sex steroids stimulate the activity of hypothalamic arylamidases in the rat. Acta Endocrinol 76:1–14

    PubMed  CAS  Google Scholar 

  • Kuhl H, Rosniatowski C, Bickel M, Taubert HD (1974 b) Stimulation by steroids and age-dependent changes of L-cystine arylamidase activity in the hypothalamus of the rat. Acta Endocrinol 76:15–23

    PubMed  CAS  Google Scholar 

  • Kuhl H, Rosniatowski C, Taubert HD (1977) The regulatory function of a pituitary LH- RH degrading enzyme system in the feedback control of gonadotrophins. Acta Endocrinol 86:60–70

    PubMed  CAS  Google Scholar 

  • Kuhl H, Rosniatowski C, Taubert HD (1978) The activity of an LH-RH degrading enzyme in the anterior pituitary during the rat oestrus cycle and its alteration by injections of sex hormones. Acta Endocrinol 87:476–484

    PubMed  CAS  Google Scholar 

  • Land H, Schütz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin-neurophysin II precursor. Nature 295:299–303

    PubMed  CAS  Google Scholar 

  • Land H, Grez M, Ruppert S, Schmale H, Rehbein M, Richter D, Schütz G (1983) Deduced amino acid sequence from the bovine oxytocin-neurophysin I precursor cDNA. Nature 302:342–344

    PubMed  CAS  Google Scholar 

  • Lang RE, Gaida W, Ganten D, Hermann K, Kraft K, Unger Th (1983) Neuropeptides and central blood pressure regulation. In: Ganten D, Pfaff D (eds) Central cardiovascular control. Springer, Berlin Heidelberg New York, pp 103–124 (Current topics in neuroendocrinology, vol 3)

    Google Scholar 

  • Lauson HD (1974) Metabolism of the neurohypophyseal hormones. In: Greep RO, Astwood EB, Kobil E, Sawyer WH (eds) The pituitary gland and its neuroendocrine control. American Physiological Society, Washington, pp 287–293 (Handbook of physiology, vol 4, part 1)

    Google Scholar 

  • Lazure C, Seidah NG, Pélaprat D, Chrétien M (1983) Proteases and post-translational processing of prohormones: a review. Can J Biochem 61:501–515

    CAS  Google Scholar 

  • Lim AT, Lolait SJ, Barlow JW, Autelitano DJ, Toh BH, Boublik J, Abraham J, Johnston CJ, Funder JW (1984) Immunoreactive arginine-vasopressin in Brattleboro rat ovary. Nature 310:61–64

    PubMed  CAS  Google Scholar 

  • Loh YP, Brownstein MJ, Gainer H (1984) Proteolysis in neuropeptide processing and other neural functions. Ann Rev Neurosci 7:189–222

    PubMed  CAS  Google Scholar 

  • Manberg PL, Youngblood WW, Kizer JS (1982) Developments of a radioimmunoassay for Pro-Leu-Gly-NH2 (PLG or HIF-1): Evidence that PLG is not present in rat brain. Brain Res 241:279–284

    PubMed  CAS  Google Scholar 

  • Marks N, Walter R (1972) MSH-release inhibiting factor: Inactivation by proteolytic enzymes. Proc Soc Exp Biol Med 140:673–676

    PubMed  CAS  Google Scholar 

  • Marks N, Abrash L, Walter R (1973) Degradation of neurohypophyseal hormones by brain and purified brain enzymes. Proc Soc Exp Biol Med 142:455–460

    PubMed  CAS  Google Scholar 

  • Marks N, Galoyan A, Grynbaum A, Lajtha A (1974) Protein and peptide hydrolases of the rat hypothalamus and pituitary. J Neurochem 22:735–739

    PubMed  CAS  Google Scholar 

  • Meisenberg G, Simmons WH (1984) Factors involved in the inactivation of vasopressin after intracerebroventricular injection in mice. Life Sci 34:1231–1240

    PubMed  CAS  Google Scholar 

  • Nair RMG, Kastin AJ, Schally AY (1971) Isolation and structure of hypothalamic MSH release inhibiting hormone. Biochem Biophys Res Commun 43:1376–1381

    PubMed  CAS  Google Scholar 

  • Nicholson HD, Swann RW, Burford GD, Wathes DC, Porter DG, Pickering BT (1984) Identification of oxytocin and vasopressin in the testis and in adrenal tissue. Regul Pept 8:141–146

    PubMed  CAS  Google Scholar 

  • Overweg NJA, Schwartz JL, Dubois BM, Walter R (1968) Inhibition of the action of oxytocin on the rat uterus by acyclic oxytocin intermediates. J Pharmacol Exp Ther 161:342–347

    CAS  Google Scholar 

  • Peach MJ (1977) Renin-angiotensin system: biochemistry and mechanism of action. Physiol Rev 57:313–370

    PubMed  CAS  Google Scholar 

  • Pedersen CA, Prange AJ (1979) Induction of maternal behavior in virgin rats after i.c.v. administration of oxytocin. Proc Natl Acad Sci USA 76:6661–6665

    PubMed  CAS  Google Scholar 

  • Pedersen CA, Ascher JA, Monroe YL, Prange A Jr (1982) Oxytocin induces maternal behavior in virgin female rats. Science 216:648–649

    PubMed  CAS  Google Scholar 

  • Pliška V, Barth T, Thom NA (1971 a) Some metabolites of specifically tritium-labeled ly- sine-vasopressin: identification by thin layer chromatography. Acta Endocrinol 67:1–11

    PubMed  Google Scholar 

  • Pliska V, Thorn NA, Vilhardt H (1971 b) In vitro uptake and breakdown of tritiated lysine- vasopressin by bovine neurohypophyseal and corticol tissue. Acta Endocrinol 67:12–22

    PubMed  CAS  Google Scholar 

  • Richter D (1983) Vasopressin and oxytocin are expressed as polyproteins. Trends Biochem Sci 8:278–281

    CAS  Google Scholar 

  • Ruppert S, Scherer G, Schütz G (1984) Recent gene conversion involving bovine vasopressin and oxytocin precursor genes suggested by nucleotide sequence. Nature 308:554–557

    PubMed  CAS  Google Scholar 

  • Sawyer WH (1964) Vertebrate neurohypophyseal principles. Endocrinology 75:981–990

    PubMed  CAS  Google Scholar 

  • Sawyer WH (1977) Evolution of neurohypophyseal hormones and their receptors. Fed Proc 36:1842–1847

    PubMed  CAS  Google Scholar 

  • Schlank H, Walter R (1972) Enzymatic cleavage of post-proline peptide bonds: degradation of arginine-vasopressin and angiotensin II. Proc Soc Exp Biol Med 141:452–455

    Google Scholar 

  • Schmale H, Richter D (1984) A single base deletion in the vasopressin gene is the cause of the diabetes insipidus in Brattleboro rats. Nature 308:705–709

    PubMed  CAS  Google Scholar 

  • Schmale H, Heinsohn S, Richter D (1983) Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor. EMBO J 2:763–767

    PubMed  CAS  Google Scholar 

  • Schwartz JCH, Gras C, Giras B, Llorens C, Malfroy B, Rose Ch, Zurel K (1984) Metabolic inactivation of enkephalins. In: Vizi ES, Magyar K (eds) Regulation of transmitter function. Akadémiai Kiadó, Budapest, pp 217–227

    Google Scholar 

  • Simmons WH, Brecher AS (1973) Inactivation of melanocyte-stimulating hormone-release-inhibiting factor by a manganese-stimulated bovine brain aminopeptidase. J Biol Chem 248:5780–5784

    PubMed  CAS  Google Scholar 

  • Simmons WH, Walter R (1980) Carboxamidopeptidase purification and characterization of a neurohypophyseal hormone inactivating peptidase from toad skin. Biochemistry 19:39–48

    PubMed  CAS  Google Scholar 

  • Simmons WH, Walter R (1981) Enzyme inactivation of oxytocin: properties of carboxami- dopeptidases. In: Schlesinger DH (ed) Neurohypophyseal peptide hormones and other biological active peptides. Elsevier North Holland, Amsterdam, pp 151–165

    Google Scholar 

  • Sjöholm I, Yman L (1967) Degradation of oxytocin, lysine-vasopressin, angiotensin II and angiotensin-II-amide by oxytocinase (cystine aminopeptidase). Acta Pharm Suec 4:65–76

    PubMed  Google Scholar 

  • Smith CW (1981) Conformation-activity studies on oxytocin and vasopressin: exploring the roles of the moieties within the hydrophilic cluster. In: Schlesinger DH (ed) Neurohypophyseal peptide hormones and other biologically active peptides. Elsevier North Holland, Amsterdam, pp 23–36

    Google Scholar 

  • Södersten P, Henning M, Melin P, Ludin S (1983) Vasopressin alters female sexual behaviour by acting on the brain independently of alterations in blood pressure. Nature 301:608–610

    PubMed  Google Scholar 

  • Sofroniew MV (1980) Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28:475–478

    PubMed  CAS  Google Scholar 

  • Sofroniew MV, Weindl A (1978) Projections from the parvocellular vasopressin and neurophysin containing neurons of the suprachiasmatic nucleus. Am J Anat 153:391–430

    PubMed  CAS  Google Scholar 

  • Stahl GL, Walter R (1978) Synthesis of (2-C-14(U)tyrosine-arginine vasotocin with high specific radio and biological activities. J Label Comp Radiopharm 14:881–886

    CAS  Google Scholar 

  • Taubert HD, Heil H, Kuhl H (1970) Untersuchungen über die Wirkung von Äthinylöstra-diol auf die L-Cystin-Aminopeptidase Aktivität im Hypothalamus der weiblichen Ratte. In: Kracht J (ed) Endokrinologie der Entwicklung und Reifung. Proceedings of the 16th Symposium of the Deutsche Gesellschaft für Endokrinologie. Springer, Berlin Heidelberg New York, pp 288–289

    Google Scholar 

  • Thody AJ, Lever de Vries CH, Tilders FJH (1980) The failure of L-prolyl-L-leucyl-glycin- amide to inhibit the release of α-melanocyte stimulating hormone in the rat. Acta Endocrinol 93:300–305

    PubMed  CAS  Google Scholar 

  • Tonon MC, Leboulanger F, Delarne C, Jegou S, Fresel J, Leroux P, Vaudry H (1979) TRH as MSH-releasing factor in the frog. In: McKern A, Julisz M (eds) Biomedical endocrinology: synthesis and release of adenohypophyseal hormones, cellular and molecular mechanisms. Plenum, New York, pp 731–751

    Google Scholar 

  • Tuppy H, Wiesbauer U, Wintersberger E (1962) Aminosäure-p-nitroanilide als Substrate für Aminopeptidasen und andere proteolytische Fermente. Hoppe Seylers Z Physiol Chem 329:278–288

    PubMed  CAS  Google Scholar 

  • Urban IJA, Joëls M (1985) Studies on function of arginine8-vasopressin in lateral septum of rats. Proc XVIth Int Congress ISPNE, Kyoto, April 14–18, 1985, abstract FC-3–10

    Google Scholar 

  • Van Nispen JW, Hannink JAJ, Greven HM (1983) Synthesis and behavioral activity of fragments of oxytocin and arginine vasopressin containing a cystine residue in position 6. In: Hruby VJ, Rich DH (eds) Peptides: structure and function. Proceedings of the 6th American peptide symposium. Pierce Chemical Company, pp 421–424

    Google Scholar 

  • Van Nispen JW, Hannink JAJ, Schoffelmeer MS, Janssen WPA, Polderdijk JP, Greven HM (1984) Synthesis of fragments of arginine vasopressin and oxytocin containing a cystine residue in position 6. Recl Trav Chim Pays Bas 103:68–74

    Google Scholar 

  • Van Ree JM (1982) Neurohypophyseal hormones and addiction. In: Hoshida H, Hagihara Y, Ebashi S (eds) Advances in pharmacology and therapeutics II, vol 1. CNS pharmacology - neuropeptides. Pergamon, Oxford, pp 199–209

    Google Scholar 

  • Van Ree JM, De Wied D (1981) Vasopressin, oxytocin and dependence on opiates. In: Martinez JL et al. (eds) Endogenous peptides and learning and memory processes. Academic, New York, pp 397–412

    Google Scholar 

  • Veale WC, Kasting NW, Cooper KE (1981) Arginine vasopressin and endogenous antipyresis: evidence and significance. Fed Proc 40:2750–2753

    PubMed  CAS  Google Scholar 

  • Versteeg CAM, Cransberg K, De Jong W, Bohus B (1983) Reduction of centrally induced pressor response by neurohypophyseal peptides: the involvement of lower brainstem mechanisms. Eur J Pharmacol 94:133–140

    PubMed  CAS  Google Scholar 

  • Walter R (1972) The role of enzymes in the formation and inactivation of peptide hormones. In: Hanson H, Jakubke HD (eds) Peptides. Elsevier/North Holland, Amsterdam, pp 363–378

    Google Scholar 

  • Walter R (1974) Oxytocin and other peptide hormones as prohormones. In: Hatotani N (ed) Psychoneuroendocrinology. Karger, Basel, pp 285–294

    Google Scholar 

  • Walter R (1977) Identification of sites in oxytocin involved in uterine receptor recognition and activation. Fed Proc 36:1872–1878

    PubMed  CAS  Google Scholar 

  • Walter R, Havran RT (1971) Arginine-vasopressin, lysine-vasopressin and oxytocin Relabeled in the glycine residue. Experientia 27:645–646

    PubMed  CAS  Google Scholar 

  • Walter R, Schlank H (1975) Differences in the enzymatic inactivation of arginine-vasopressin and oxytocin by rat kidney homogenate. Endocrinology 96:811–814

    PubMed  CAS  Google Scholar 

  • Walter R, Simmons WH (1977) Metabolism of neurohypophyseal hormones: consideration from a molecular viewpoint. In: Moses AM, Share L (eds) Neurohypophysis. Karger, Basel, pp 167–188

    Google Scholar 

  • Walter R, Griffith EC, Hooper KC (1973) Production of MSH-release-inhibiting hormone by a particulate preparation of hypothalami; mechanisms of oxytocin inactivation. Brain Res 60:449–457

    PubMed  CAS  Google Scholar 

  • Walter R, Hoffman PL, Flexner JB, Flexner LB (1975) Neurohypophyseal hormones, analogs and fragments: their effect on puromycin-induced amnesia. Proc Natl Acad Sci USA 72:4180–4184

    PubMed  CAS  Google Scholar 

  • Walter R, Smith C, Mehta PK, Boonjarern S, Arruda JAL, Kurtzmann NA (1977) Conformational considerations of vasopressin as a guide to the development of biological probes and therapeutic agents. In: Adreoli TE, Ganthar JJ, Recor FC (eds) Disturbances in body fluid osmolality. American Physiological Society, Bethesda, pp 1–36

    Google Scholar 

  • Walter R, Van Ree JM, De Wied D (1978) Modification of conditioned behavior of rats by neurohypophyseal hormones analogues. Proc Natl Acad Sci USA 75:2493–2496

    PubMed  CAS  Google Scholar 

  • Wang X-C, Burbach JPH (1986) Formation of metabolites of [Arg8]vasopressin (AVP) by brain peptidases: conversion of the intermediate [Cyt6]AVP-(3–9). FEBS Lett. In press

    Google Scholar 

  • Wang X-C, Burbach JPH, Verhoef J, De Wied D (1983 a) Proteolytic conversion of arginine-vasotocin by synaptic membranes from rat and chicken brain. Brain Res 275:83–90

    PubMed  CAS  Google Scholar 

  • Wang X-C, Burbach JPH, Verhoef J (1983 b) Proteolysis of adrenocorticotropin in brain: characterization of cleavage sites by peptidases in synaptic membranes and formation of peptide fragments. J Biol Chem 258:7942–7947

    PubMed  CAS  Google Scholar 

  • Wathes DC, Swann RW (1982) Is oxytocin an ovarian hormone? Nature 297:225–227

    PubMed  CAS  Google Scholar 

  • Zimmermann EA, Nilaver G, Hou-You A, Silverman AJ (1984) Vasopressinergic and oxytocinergic pathways in the central nervous system. Fed Proc 43:91–96

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burbach, J.P.H. (1986). Proteolytic Conversion of Oxytocin, Vasopressin, and Related Peptides in the Brain. In: Ganten, D., Pfaff, D. (eds) Neurobiology of Oxytocin. Current Topics in Neuroendocrinology, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70414-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70414-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70416-1

  • Online ISBN: 978-3-642-70414-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics