Skip to main content

The Biological Significance of the Earth’s Magnetic Field

  • Chapter

Part of the book series: Progress in Sensory Physiology ((PHYSIOLOGY,volume 5))

Abstract

As long as living organisms exist on this globe they are under the influence of the earth’s magnetic field (EMF). In the last 15 years more and more data have been published which demonstrate that development, metabolism, and information processing are affected by this geophysical force; furthermore, it has been proved that animals use the parameters of the EMF for orientation and rhythmicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achkasova YN, Monastyrskikh LV, Guk MG, Grigor’eva AK (1973) Change in properties of microorganisms due to shielding from natural magnetic fields. In: Effect of natural and weak artificial magnetic fields on biological objects. Belgrad, pp 129–130

    Google Scholar 

  • Akoev GN, Ilyinsky OB, Zadan PM (1976) Responses of electroreceptors (ampullae of Lorenzini) of skates to electric and magnetic fields. J Comp Physiol 106: 127–136

    Google Scholar 

  • Andrianov GN, Brown HR, Ilyinsky OB (1974) Responses of central neurons to electric and magnetic stimuli of the ampullae of Lorenzini in the Black Sea skate. J Comp Physiol 93: 287–299

    Google Scholar 

  • Arendse MC (1978) Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus. Nature 274: 358–362

    Google Scholar 

  • Arendse MC, Vrins JCM (1975) Magnetic orientation and its relation to photic orientation in Tenebrio molitor L. ( Coleoptera, Tenebrionidae). Neth J Zool 25: 407–437

    Google Scholar 

  • Barnothy M (ed) (1969) Biological effects of magnetic fields, vol 2. Plenum, New York

    Google Scholar 

  • Becker G (1963 a) Ruheeinstellung nach der Himmelsrichtung — eine Magnetfeldorientierung bei Termiten. Naturwissenschaften 50:455

    Google Scholar 

  • Becker G (1963 b) Magnetfeld-Orientierung von Dipteren. Naturwissenschaften 50:664

    Google Scholar 

  • Becker G (1964) Reaktionen von Insekten auf Magnetfelder, elektrische Felder und atmospherics. Z Angew Entomol 54: 75–88

    Google Scholar 

  • Becker G (1965) Zur Magnetfeld-Orientierung von Dipteren. Z Vergl Physiol 51: 135–150

    Google Scholar 

  • Becker G (1971) Magnetfeld-Einfluß auf die Galeriebau-Richtung bei Termiten. Naturwissenschaften 58: 60

    PubMed  CAS  Google Scholar 

  • Becker G (1972) Über den Galeriebau von Termiten. Z Angew Entomol 70: 120–133

    Google Scholar 

  • Becker G (1973) Aktivitätsschwankungen bei Termiten, ein Phänomen von grundsätzlicher biologischer Bedeutung. Z Angew Entomol 72: 273–290

    Google Scholar 

  • Becker G (1980) Untersuchungen über die Korrelation der Termiten-Fraßaktivität zu den durch die Sonnenaktivität bedingten und anderen Änderungen des geomagnetischen Felds. Z Angew Entomol 89:401–419

    Google Scholar 

  • Becker G, Gerisch W (1973) Zusammenhänge zwischen der Fraßaktivität von Termiten und solaren Einflüssen. Z Angew Entomol 73: 365–386

    Google Scholar 

  • Becker G, Gerisch W (1977) Korrelation zwischen der Fraßaktivität von Termiten und der geomagnetischen Aktivität. Z Angew Entomol 84: 353–388

    Google Scholar 

  • Becker G, Speck U (1964) Untersuchungen über die Magnetfeld-Orientierung von Dipteren. Z Vergl Physiol 49: 301–340

    Google Scholar 

  • Becker RO, Bachmann C, Friedman H (1962) The direct current control system. A link between environment and organism. NY State J Med 62 /8: 1169

    CAS  Google Scholar 

  • Bercken J van der, Broekhuigen S, Ringelberg J, Velthuis HHW (1967) Non-visual orientation in Talitrus saltator. Experientia 23: 44–45

    PubMed  Google Scholar 

  • Bhaskara DS, Srivastava BJ (1970) Influence of solar and geomagnetic disturbances on road traffic accidents. Bull Natl Geophys Res Inst (India) 8/1–2: 32

    Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190: 377–379

    PubMed  CAS  Google Scholar 

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140: 720–729

    PubMed  CAS  Google Scholar 

  • Blakemore RP, Frankel RB, Kalmijn A J (1980) Southseeking magnetotactic bacteria in the southern hemisphere. Nature 286: 384–385

    Google Scholar 

  • Brown FA Jr (1962) Response of the planarian, Dugesia, and the Protozoon, Paramecium, to very weak horizontal magnetic fields. Biol Bull 123: 264–281

    Google Scholar 

  • Brown FA Jr (1965) A unified theory for biological rhythms. In: Aschoff J (ed) Circadian clocks. North Holland, Amsterdam, pp 231–261

    Google Scholar 

  • Brown FA Jr (1966) Effects and after-effects on planarians of reversals of the horizontal magnetic vector. Nature 209: 533–535

    PubMed  Google Scholar 

  • Brown FA Jr (1972) The “clocks” timing biological rhythms. Am Sci 60: 756–766

    PubMed  Google Scholar 

  • Brown FA Jr, Barnwell FH (1960) Magnetic field strength and organismic orientation. Biol Bull 119: 306

    Google Scholar 

  • Brown FA Jr, Webb HM (1960) A “compass-direction effect” for snails in constant conditions and its lunar modulation. Biol Bull 119: 307

    Google Scholar 

  • Brown FA Jr, Bennett MF, Webb HM (1960a) A magnetic compass response of an organism. Biol Bull 119: 65–74

    Google Scholar 

  • Brown FA Jr, Webb HM, Brett WJ (1960b) Magnetic response of an organism and its lunar relationships. Biol Bull 118: 382–392

    Google Scholar 

  • Brown FA Jr, Barnwell FH, Webb HM (1964a) Adaptation of the magnetoreceptive mechanism of mud-snails to geomagnetic strength. Biol Bull 127: 221–231

    Google Scholar 

  • Brown FA Jr, Webb HM, Barnwell FH (1964b) A compass directional phenomenon in mud-snails and its relation to magnetism. Biol Bull 127: 206–220

    Google Scholar 

  • Brown HR, Jlyinsky OB (1978) The ampullae of Lorenzini in the magnetic field. J Comp Physiol 126:333–341 Busby DE (1968) Space biomagnetics. Space Life Sci 1: 23

    Google Scholar 

  • Chuvaev PP (1967) Effect of compass orientation on speed of germination and nature of growth of seedlings. Fiziol Rast 14 /3: 540

    Google Scholar 

  • Chuvaev PP (1969) Effect of an extremely weak steady magnetic field on seedling root tissues and on some microorganisms. In: Materials of 2nd Ail-Union Conference. Effect of magnetic fields on biological objects. Moscow, p 252

    Google Scholar 

  • Cremer-Bartels G, Krause K, Mitoskas S, Brodersen D (1984) Magnetic field of the earth as additional Zeitgeber for endogenous rhythms? Naturwissenschaften 71: 567–574

    PubMed  CAS  Google Scholar 

  • De Jong D (1982) Orientation of comb building by honeybees. J Comp Physiol 147: 495–501

    Google Scholar 

  • Dubrov AP (1969a) Effect of heliogeophysical factors on membrane permeability and diurnal rhythm of excretion of organic substances by plant roots. Dokl Akad Nauk SSSR 187 /6: 1429

    Google Scholar 

  • Dubrov AP (1969b) Effect of natural electric and magnetic fields on permeability of biological membranes. In: Materials of 2nd All-Union Conference. Effect of magnetic fields on biological objects. Moscow, p 79

    Google Scholar 

  • Dubrov AP (1970) Effect of geomagnetic field on physiological processes in plants. Fiziol Rast 17 /4: 836

    Google Scholar 

  • Dubrov AP (1971a) Dissymmetry of biological reactions and the geomagnetic field. In: Reaction of biological systems to weak magnetic fields. Moscow, p 9

    Google Scholar 

  • Dubrov AP ( 1971 b) Role of dissymmetry of biological systems and their reactions to the effect of heliogeophysical factors. In: Symmetry in nature. Leningrad, p 365

    Google Scholar 

  • Dubrov AP (1971c) Global changes in biochemical and physicochemical processes due to the geomagnetic field. In: Questions of theory and practice of magnetic treatment of water and aqueous systems. Tsvetmetinformatsiya, Moscow, p 302

    Google Scholar 

  • Dubrov AP ( 1971 d) Spectrophotometric method of determining excretory substances. In: Physiological and biochemical basic of interaction of plants in a phytocenose, no 2. Naukova Dumka, Kiev, pp 158–162

    Google Scholar 

  • Dubrov AP (1973) Functional symmetry and dissymmetry of biological objects. Zh Obshch Biol 34 /3: 440

    PubMed  CAS  Google Scholar 

  • Dubrov AP (1974) Effect of cosmic factors on micro- and macroevolutionary processes in earth’s biosphere. In: Cosmos and evolution. Moscow, p 176

    Google Scholar 

  • Dubrov AP (1978) The geomagnetic field and life–geomagnetobiology. New York

    Google Scholar 

  • Dycus AM, Schultz A J (1964) A survey of the effects of magnetic environments on seed germination and early growth (Abstr). Plant Physiol 39 /5: 29

    Google Scholar 

  • Fabre J-H (n. d.) Souvenirs entomologiques. Delagrave, Paris, 2nd series, pp 119–120

    Google Scholar 

  • Frankel RB, Blakemore RP, Wolfe FS (1979) Magnetite in freshwater magnetic bacteria. Science 203: 1355–1356

    PubMed  CAS  Google Scholar 

  • Frankel RB, Blakemore RP, Torres de Araujo FF, Esquivel DMS, Danon J (1981) Magnetotactic bacteria at the geomagnetic equator. Science 212: 1269–1270

    Google Scholar 

  • Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gould JL (1980) The case for magnetic sensitivity in birds and bees (such as it is). Am Sci 68: 256–267

    Google Scholar 

  • Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201: 1026–1028

    PubMed  CAS  Google Scholar 

  • Gould JL, Kirschvink JL, Deffeyes KS, Brines ML (1980) Orientation of demagnetized bees. J Exp Biol 86: 1–8

    Google Scholar 

  • Halpern MH, Van Dyke JH (1966) Very low magnetic fields: biological effects and their implication for space exploration. Aerospace Med 37 /3: 281

    Google Scholar 

  • Ishay J, Sadeh D (1975) Direction finding by hornets under gravitational and centrifugal forces. Science 190: 802–864

    PubMed  CAS  Google Scholar 

  • Jones DS, MacFadden BJ (1982) Induced magnetization in the Monarch butterfly, Danaus plexippus ( Insecta, Lepidoptera). J Exp Biol 96: 1–9

    Google Scholar 

  • Josephson BD (1969) Weakly coupled superconductors. In: Parks RD (ed) Superconductivity, vol 1, Dekker, New York, pp 423–447

    Google Scholar 

  • Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68: 102–106

    PubMed  CAS  Google Scholar 

  • Keeton WT (1974) The mystery of pigeon homing. Sci Am 231 /6, 96–107

    PubMed  CAS  Google Scholar 

  • Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuations in the earth’s magnetic field influence pigeon orientation. J Comp Physiol 95: 95–103

    Google Scholar 

  • Kirschvink JL (1980) South-seeking magnetic bacteria. J Exp Biol 86: 345–347

    Google Scholar 

  • Kirschvink JL (1981) The horizontal magnetic dance of the honeybee (Apis mellifera) is compatible withasingle-domainferromagneticmagnetoreceptor. BioSystemsl4: 193–203

    Google Scholar 

  • Kirschvink JL (1982) Birds, bees and magnetism. TINS 5: 160–167

    CAS  Google Scholar 

  • Kisliuk M, Ishay J (1977) Influence of an additional magnetic field on hornet nest architecture. Experientia 33: 885–887

    Google Scholar 

  • Kisliuk M, Ishay J (1979) Influence of the earth’s magnetic field on the comb building orientation of hornets. Experientia 35: 1041–1042

    Google Scholar 

  • Kopecek T (1972) Effects of microelectromagnetic fields on plant growth. Acta Univ Agric Brno Fac Agron 20 /2: 199–210

    Google Scholar 

  • Korall H, Martin H (1985) Responses of bristle field sensilla in Apis mellifica to geomagnetic and astrophysical fields. J Comp Physiol (to be published)

    Google Scholar 

  • Kramer G (1950) Orientierte Zugaktivität gekäfigter Singvögel. Naturwissenschaften 37: 188

    Google Scholar 

  • Kramer G (1953) Die Sonnenorientierung der Vögel. Verh Dtsch Zool Ges 45. Jahresvers., Freiburg 1952, pp 72–84

    Google Scholar 

  • Kreithen ML, Keeton WT (1974a) Detection of changes in atmospheric pressure by the homing pigeon, Columba livia. J Comp Physiol 89: 73–82

    Google Scholar 

  • Kreithen ML, Keeton WT (1974b) Attempts to condition homing pigeons to magnetic stimuli. J Comp Physiol 91:355 –362

    Google Scholar 

  • Kutterbach DA, Walcott B, Reeder RJ, Frankel RB (1982) Iron-containing cells in the honey bee (Apis mellifera). Science 218: 695–697

    Google Scholar 

  • Leucht T (1984) Responses to light under varying magnetic conditions in the honeybee, Apis mellifica. J Comp Physiol 154: 865–870

    Google Scholar 

  • Levengood W (1965) Factors of influencing biomagnetic environments during the solar cycle. Nature 205: 465–470

    Google Scholar 

  • Levengood W (1966) Cytogenetic variations induced with a magnetic probe. Nature 209: 1009–1013

    PubMed  CAS  Google Scholar 

  • Lindauer M (1976a) Recent advances in the orientation and learning of honeybees. Proc XV Intern Congr Entomol. Washington DC, pp 450–460

    Google Scholar 

  • Lindauer M (1976b) Orientierung der Tiere. Verh Dt Zool Ges 69. Jahresvers., Hamburg 1976, pp 156–183

    Google Scholar 

  • Lindauer M (1979) Orientierung der Tiere in Raum und Zeit. Rev Physiol Biochem Pharmacol 85: 1–62

    PubMed  CAS  Google Scholar 

  • Lindauer M, Martin H (1968) Die Schwereorientierung der Bienen unter dem Einfluß des Erdmagnetfeldes. Z Vergl Physiol 60: 219–243

    Google Scholar 

  • Lindauer M, Martin H (1972) Magnetic effect on dancing bees. In: Galler SR, Schmidt- Koenig K, Jacobs SJ, Belleville RE (eds) Animal orientation and navigation. NASA/SP 262 Washington, pp 559–567

    Google Scholar 

  • Martin H, Lindauer M (1973) Orientierung im Erdmagnetfeld. Fortschr Zool 21: 211–228

    PubMed  CAS  Google Scholar 

  • Martin H, Lindauer M (1977) Der Einfluß des Erdmagnetfeldes auf die Schwereorientierung der Honigbiene (Apis mellifica). J Comp Physiol 122: 145–187

    Google Scholar 

  • Martin H, Lindauer M, Martin U (1983) Zeitsinn und Aktivitätsrhythmus der Honigbiene — endogen oder exogen gesteuert? Sitzungsber Math Naturwiss Kl Bayer Akad Wiss Muenchen, pp 1–41

    Google Scholar 

  • Matthews GVT (1963) The astronomical basis of “nonsense” orientation. Proc XIII Intern Ornithol Congr, Ithaca, pp 415 - 429

    Google Scholar 

  • Merkel FW, Fromme HG (1958) Untersuchungen über das Orientierungsvermögen nächtlich ziehender Rotkehlchen (Erithacus rubecula). Naturwissenschaften 45: 499–500

    Google Scholar 

  • Merkel FW, Wiltschko W (1965) Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula). Vogelwarte 23: 71–77

    Google Scholar 

  • Mikhailovskii VN, Krasnogorskii MM, Voichishin KS, Grabar LI, Zhegar’ VM (1969) Perception of weak magnetic fields by people. Dopov Akad Nauk Ukr RSR [B] 10: 929

    Google Scholar 

  • Mikhailovskii VN, Voichishin KS, Grabar LI (1971) Perception of infralow-frequency oscillations of magnetic field by some people and means of protection. In: Reaction of biological systems to weak magnetic fields. Moscow, p 147

    Google Scholar 

  • Mikhailovskii VN, Krasnogorskii NN, Voichishin KS, Grabar LI, Zhegar’ VN ( 1973 ) Perception of slight variations in strength of magnetic field by people. In: Problems of bionics. Nauka, Moskow, p 202

    Google Scholar 

  • Murr LE (1966) Plant physiology in simulated geoelectric and geomagnetic fields. Adv Front Plant Sci 15: 97–120

    Google Scholar 

  • Muzalevskaya NI (1975) Inhomogeneity of low-frequency fluctuations of electromagnetic field and its ecological significance. In: Human adaptation system and the external environment. Leningrad, pp 113–115

    Google Scholar 

  • Muzalevskaya NI, Larina TA ( 1974 ) Change in state of blood clotting and anticlotting system of white rats due to a weak alternating magnetic field in the infralow-frequency range in experiments. In: Magnetic field in medicine. Kirgiszskii Gos, p 90

    Google Scholar 

  • Muzalevskaya NI, Pavlova RN (1975) Nature of change in thermodynamic equilibrium of blood serum proteins due to a weak alternating magnetic field. In: Proceedings of the 3rd Ail-Union Symposium. Effect of magnetic fields on biological objects. Kaliningrad, p 35

    Google Scholar 

  • Papi F (1976) The olfactory navigation system of the homing pigeon. Verh Dtsch Zool Ges 184–205

    Google Scholar 

  • Papi F, Keeton WT, Brown AI, Benvenuti SJ (1978) Do American and Italian pigeons rely on different homing mechanisms? J Comp Physiol 128: 303–317

    Google Scholar 

  • Pavlovich SA, Sluvko AL (1975) Effect of shielding from magnetic field on Staphylococcus aureus. In: Proceedings of the 3rd All-Union Symposium. Effect of magnetic fields on biological objects. Kaliningrad, p 56

    Google Scholar 

  • Persinger MA, Lafrentiere GF (1975) Relative hypertrophy of rat thyroid following ten day exposures to an ELF magnetic field: determining intensity thresholds. Int J Bio- meteorol [Suppl] 19: 126–127

    Google Scholar 

  • Persinger MA, Glavin GB, Ossenkopp KP (1972) Physiological changes in adult rats exposed to an ELF rotating magnetic field. Int J Biometeorol 16 /2: 163–172

    PubMed  CAS  Google Scholar 

  • Phillips JB (1977) Use of the earth’s magnetic field by orienting cave salamanders (.Eurycea lucifuga). J Comp Physiol 121: 273 - 288

    Google Scholar 

  • Presman AS (1971) Electromagnetic fields in the biosphere. Znaniya, Moscow

    Google Scholar 

  • Presti D, Pettigrew JD (1980) Ferromagnetic coupling to muscle receptors as a basis for geomagnetic field sensitivity in animals. Nature 285: 99–101

    PubMed  CAS  Google Scholar 

  • Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137: 243–248

    Google Scholar 

  • Robert P (1963) Les migrations orientées du hanneton commun Melolontha melolontha L. (Coléoptère, Scarabeidae). Ergeb Biol 26: 135–146

    Google Scholar 

  • Russo F, Caldwell WE (1971) Biomagnetic phenomena: some implications for the behavioural and neurophysiological sciences. Genet Psychol Monogr 84: 177–243

    Google Scholar 

  • Schmidt-König K (1961) Die Sonne als Kompaß im Heimorientierungssystem der Brieftaube. Z Tierpsychol 18: 221–244

    Google Scholar 

  • Schmidt-König K, Walcott C (1978) Tracks of pigeons’ homing with frosted lenses. Anim Behav 26: 480–486

    Google Scholar 

  • Schneider F (1957a) Die Fernorientierung des Maikäfers während seiner ersten Fraßperiode und beim Rückflug in das alte Brutgebiet. Verh Schweiz Naturforsch Ges 95–96

    Google Scholar 

  • Schneider F (1957b) Neue Beobachtungen über die Orientierung des Maikäfers. Schweiz Z Obst Weinbau 66: 414–415

    Google Scholar 

  • Schneider F (1960) Der experimentelle Nachweis einer magnetischen und elektrischen Orientierung des Maikäfers. Verh Schweiz Naturforsch Ges 132–134

    Google Scholar 

  • Schneider F (1961) Beeinflussung der Aktivität des Maikäfers durch Veränderung der gegenseitigen Lage magnetischer und elektrischer Felder. Mitt Schweiz Entomol Ges 33: 223–237

    Google Scholar 

  • Schneider F (1963) Ultraoptische Orientierung des Maikäfers (Melolontha vulgaris F.) in künstlichen elektrischen und magnetischen Feldern. Ergeb Biol 26: 147–157

    Google Scholar 

  • Schneider F (1964) Weitere Beweise für die ultraoptisch-exogene Steuerung der Rhythmen in der magnetischen Orientierung des Maikäfers. Verh Schweiz Naturforsch Ges 139–140

    Google Scholar 

  • Schneider F (1975) Der experimentelle Nachweis magnetischer, elektrischer und anderer ultraoptischer Informationen. Z Angew Entomol 77: 225–236

    Google Scholar 

  • Schulten K, Weller A (1984) Magnetfeldeffekte in Chemie und Biologie. Umschau 84: 779–783

    CAS  Google Scholar 

  • Schultz A, Smith J, Dycus A (1966) Effect on early plant growth of nulled and directional magnetic field environment. Proc. 3rd Intern. Biomagnetic Symp., Univ. of Illinois, Chicago, p 67

    Google Scholar 

  • Sirotina LV (1973) Amylolysis of starch of millet seedlings subjected to weak magnetic fields. In: Effect of natural and weak artificial magnetic fields on biological objects. Belgorod, pp 106–107

    Google Scholar 

  • Sirotina LV, Sirotin AA (1975) Pigment production in ontogenesis of millet after presowing exposure to a magnetic field. In: Proceedings of the 3rd All-Union Symposium. Effect of magnetic fields on biological objects. Kaliningrad, pp 193–194

    Google Scholar 

  • Sirotina LV, Sirotin AA, Travkin MP (1971) Some features of biological effect of weak magnetic fields. In: Reaction of biological systems to weak magnetic fields. Moscow, p 95

    Google Scholar 

  • Sosunov AV, Petrova SA, Borisov FO, Chernov AA (1971) A study of the clinical-laboratory significance of the ESR of the healthy and sick organism in shielded spaces. In: Reaction of biological systems to weak magnetic fields. Moscow, p 153

    Google Scholar 

  • Sosunov AV, Parkulab LV (1973) Clinical-laboratory significance of study of ESR in infectious patients in a partially shielded space. In: Effect of natural and weak artificial magnetic fields on biological objects. Belgorod, p 75

    Google Scholar 

  • Sosunov AV, Golubchak BA, Semkin VYa, MePnikov AV (1972) Observations on some biological processes in shielded spaces. In: Hygienic assessment of magnetic fields. AN SSSR, Moscow, pp 144–146

    Google Scholar 

  • Spasskaya MG, Muzalevskaya NI (1972a) Dynamics of some biological indices in relation to action of weak alternating magnetic fields. In: Materials of All-Union Symposium. Effect of magnetic fields on living organisms. Baku, p 90

    Google Scholar 

  • Spasskaya MG, Muzalevskaya NI (1972b) A morphological assessment of the effect of a weak magnetic field of infralow-frequency on the animal organism. In: Hygienic assessment of magnetic fields. AN SSSR, Moscow, pp 150–156

    Google Scholar 

  • Srivastava BJ, Bhaskara DS (1974) Unusual magnetic activity during 4-10 VIII 1972 and some of its biological consequences. Indian J Radio Space Phys 3: 384–390

    Google Scholar 

  • Sudakov KV, Antimonii GD (1973) Central mechanisms of action of electromagnetic fields. Usp Fiziol Nauk 42 /2: 101

    Google Scholar 

  • Sushkov FV (1975) Equivalence of some reactions of tissue culture cells to increase and reduction of magnetic field strength. In: Physicomathematical and biological problems of effect of electromagnetic fields and ionization of air, vol 2. Nauka, Moscow, pp 112–113

    Google Scholar 

  • Technau G (1976) Der Einfluß des Erdmagnetfeldes auf die Entwicklung von Drosophila melanogaster. Zulassungsarbeit, University of Würzburg

    Google Scholar 

  • Temur’yants NA (1971) Effect of magnetic fields of infralow frequency and low strength on peripheral blood leukocytes. In: Reaction of biological systems to weak magnetic fields. Moscow, p 43

    Google Scholar 

  • Temur’yants NA (1972) Morphocytochemical study of the biological effectiveness of a weak magnetic field of infralow frequency. In: Materials of Ail-Union Symposium. Effect of artificial magnetic fields on living organisms. Baku, p 23

    Google Scholar 

  • Temur’yants NA (1975) Changes in rabbit blood system due to prolonged exposure to a weak electromagnetic field. In: Physicomathematical and biological problems of effects of electromagnetic fields and ionization of air, vol 2. Nauka, Moscow, pp 134–136

    Google Scholar 

  • Tesch FW (1974) Influence of geomagnetism and salinity on the directional choice of eels. Helgol Wiss Meeresunters 26: 382–395

    Google Scholar 

  • Travkin MP, Antipova NM (1973) Effect of reduced magnetic field on development and fecundity of Drosophila melanogaster. In: Effect of natural and weak artificial magnetic fields on biological objects. Belgorod, p 82

    Google Scholar 

  • Volynskii AM (1973) Change in cardiac and nervous activity in animals of different age due to an electromagnetic field of low frequency and low strength. Communication I. Trudy Krym Med Inst 53:7–13

    Google Scholar 

  • Volynskii AM, Vladimirskii BM (1969) Modelling of the effect of a magnetic storm on mammals. Soln Zemnaya Fiziol 1: 294

    Google Scholar 

  • Volynskii AM, Brodovskaya ZI, Temur’yants NA, Chepkova ZD, Vladimirskii BM (1969) A study of the effect of low-frequency electromagnetic fields on various systems of the animal organism. In: Adaptation of the organism to physical factors. Vilnius, p 354

    Google Scholar 

  • Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-König K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 143–151

    Google Scholar 

  • Walcott C (1980) Homing pigeon vanishing bearings at magnetic anomalies are not altered by bar magnets. J Exp Biol 86: 349–352

    Google Scholar 

  • Walcott C, Green RP (1974) Orientation of homing pigeons altered by a change in the direction of an applied magnetic field. Science 184: 180–182

    PubMed  CAS  Google Scholar 

  • Walcott C, Gould JL, Kirschvink JL (1979) Pigeons have magnets. Science 205: 1027–1029

    PubMed  CAS  Google Scholar 

  • Wallraff HG (1978) Proposed principles of magnetic field perception in birds. Oikos 30: 188–194

    Google Scholar 

  • Wehner R, Labhart T (1970) Perception of the geomagnetic field in the fly Drosophila melanogaster. Experientia 26: 967–968

    PubMed  CAS  Google Scholar 

  • Wever R (1967) Über die Beeinflussung der circadianen Periodik des Menschen durch schwache elektromagnetische Felder. Z Vergl Physiol 56: 111–128

    Google Scholar 

  • Wever R (1968a) Einfluß schwacher elektromagnetischer Felder auf die circadiane Periodik des Menschen. Naturwissenschaften 55: 29–32

    PubMed  CAS  Google Scholar 

  • Wever R (1968b) Gesetzmäßigkeiten der circadianen Periodik des Menschen geprüft an der Wirkung eines schwachen elektrischen Wechselfeldes. Pflügers Arch 302 /2: 97

    PubMed  CAS  Google Scholar 

  • Wever R (1970) The effect of electric fields on circadian rhythms in men. Life Sci Space Res 8: 177–187

    PubMed  CAS  Google Scholar 

  • Wever R (1971) Die circadiane Periodik des Menschen als Indikator für die biologische Wirkung elektromagnetischer Felder. Z Phys Med 2: 439–471

    Google Scholar 

  • Wiltschko R, Wiltschko W (1978) Evidence for the use of magnetic outward-journey information in homing pigeons. Naturwissenschaften 65: 112 - 113

    Google Scholar 

  • Wiltschko W (1968) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z Tierpsychol 25: 537–558

    PubMed  CAS  Google Scholar 

  • Wiltschko W (1972) Einige Parameter des Magnetkompasses der Rotkehlchen. Verh Dtsch Zool Ges 65: 281–285

    Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176: 62–64

    PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night-migrating birds. J Comp Physiol 109: 91–99

    Google Scholar 

  • Wiltschko W, Höck H, Merkel FW (1971) Outdoor experiments with migrating European robins in artificial magnetic fields. Z Tierpsychol 29: 409–415

    Google Scholar 

  • Zoeger J, Dunn J, Fuller M (1980) Magnetic material in the head of a dolphin. Trans Am Geophys Union 61: 225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lindauer, M., Martin, H. (1985). The Biological Significance of the Earth’s Magnetic Field. In: Autrum, H., Ottoson, D., Perl, E.R., Schmidt, R.F., Shimazu, H., Willis, W.D. (eds) Progress in Sensory Physiology. Progress in Sensory Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70408-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70408-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70410-9

  • Online ISBN: 978-3-642-70408-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics