Advertisement

Mechanoreception in Ciliates

  • H. Machemer
  • J. W. Deitmer
Part of the Progress in Sensory Physiology book series (PHYSIOLOGY, volume 5)

Abstract

Living cells share the ability to react to environmental stimuli, such as touch, light, chemicals or temperature. During stimulus reception, external energy is translated and amplified into electrical signals by means of physicochemical processes.

Keywords

Reversal Potential Receptor Potential Receptor Response Decay Time Constant Ciliated Protozoan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akoev GN (1982) The effect of Mg and Ca on the excitability of Pacinian corpuscles. Brain Res 239: 39–49CrossRefGoogle Scholar
  2. Brehm P, Eckert R (1978 a) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202: 1203–1206Google Scholar
  3. Brehm P, Eckert R (1978 b) An electrophysiological study of the regulation of beat frequency in Paramecium. J Physiol 283: 557–568Google Scholar
  4. Budelmann BU (1979) Hair cell polarization in the gravity receptor systems of the statocysts of the cephalopods Sepia officinalis and Loligo vulgaris. Brain Res 160: 261–270PubMedCrossRefGoogle Scholar
  5. Byrne BJ, Byrne BC (1978) Behaviour and the excitable membrane in Paramecium. CRC Crit Rev Microbiol 6: 53–108PubMedCrossRefGoogle Scholar
  6. Chad JE, Deitmer JW, Eckert R (1984) Spatio-temporal characteristics of Ca2+ dispersal following its injection into Aplysia neurons. Biophys J 45: 181aGoogle Scholar
  7. Corey DP, Hudspeth A J (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281: 675–677PubMedCrossRefGoogle Scholar
  8. Deitmer JW (1981) Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia. J Comp Physiol 141: 173–182CrossRefGoogle Scholar
  9. Deitmer JW (1982) The effects of tetraethylammonium and other agents on the potassium mechanoreceptor current in the ciliate Stylonychia. J Exp Biol 96:239–249Google Scholar
  10. Deitmer JW (1983) Ca channels in the membrane of the hypotrich ciliate Stylonychia. In: Grinnell A, Moody WJ (eds) The physiology of excitable cells. Liss, New York, pp 51–63Google Scholar
  11. Deitmer JW (1984) Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia. J Physiol 355: 137–159PubMedGoogle Scholar
  12. De Peyer JE, Deitmer JW (1980) Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylonychia. J Exp Biol 88:73–89Google Scholar
  13. De Peyer JE, Machemer H (1977) Membrane excitability in Stylonychia: Properties of the two-peak regenerative Ca-response. J Comp Physiol 121:15 –32Google Scholar
  14. De Peyer JE, Machemer H (1978 a) Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia. J Comp Physiol 127: 255–266Google Scholar
  15. De Peyer JE, Machemer H (1978b) Are receptor-activated ciliary motor responses mediated through voltage or current? Nature 276:285–287Google Scholar
  16. Doroszewski M (1970) Responses of the ciliate Dileptus to mechanical stimuli. Acta Protozoons 7: 353–362Google Scholar
  17. Doughty MJ, Dryl S (1981) Control of ciliary activity in Paramecium: An analysis of chemosensory transduction in a eukaryotic unicellular organism. Prog Neurobiol 61: 1–115Google Scholar
  18. Dunlap K (1977) Localization of calcium channels in Paramecium caudatum. J Physiol 271: 119–133PubMedGoogle Scholar
  19. Eckert R (1972) Bioelectric control of ciliary activity. Science 176: 473–481PubMedCrossRefGoogle Scholar
  20. Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8: 353–383PubMedCrossRefGoogle Scholar
  21. Eckert R, Chad JE (1984) Inactivation of Ca channels. Prog Biophys Mol Biol 44:215–267Google Scholar
  22. Eckert R, Naitoh Y (1970) Passive electrical properties of Paramecium and problems of ciliary coordination. J Gen Physiol 55: 467–483PubMedCrossRefGoogle Scholar
  23. Eckert R, Naitoh Y, Friedman K (1972) Sensory mechanisms in Paramecium. I. Two components of the electric response to mechanical stimulation of the anterior surface. J Exp Biol 56: 683–694Google Scholar
  24. Eckert R, Naitoh Y, Machemer H (1976) Calcium in the bioelectric and motor functions of Paramecium. Proc Soc Exp Biol 30:233–255Google Scholar
  25. Edwards C, Ottoson D, Rydqvist B, Swerup C (1981) The permeability of the transducer membrane of the crayfish stretch receptor to calcium and to other divalent cations. Neuroscience 6: 1455–1460PubMedCrossRefGoogle Scholar
  26. Ehrlich BE, Finkelstein A, Fuorte M, Kung C (1984) Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers. Science 225: 427–428PubMedCrossRefGoogle Scholar
  27. Flock A (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed) Principles of receptor physiology. Springer, Berlin Heidelberg New York, pp 396–441 (Handbook of sensory physiology, vol I )Google Scholar
  28. Gage PW (1976) Generation of end-plate potentials. Physiol Rev 56: 177–247PubMedGoogle Scholar
  29. Gustin MC, Bonini MN, Nelson DL (1983) Membrane potential regulation of cAMP: control mechanism for the swimming behaviour in Paramecium. Soc Neurosci Abstr 9: 167Google Scholar
  30. Hara R, Naitoh Y (1980) Electrophysiological responses of Didinium nasutum to mechanical and electrical stimulations. Zool Mag Tokyo 89: 450Google Scholar
  31. Hennessey TM, Machemer H, Nelson DL (1985) Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol 36: 153–156PubMedGoogle Scholar
  32. Hille B (1978) Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22:283–294Google Scholar
  33. Hudspeth A J, Jacobs R (1979) Stereocilia mediate transduction in vertebrate hair cells. Proc Natl Acad Sci USA 76: 1506–1509PubMedCrossRefGoogle Scholar
  34. Hunt CC (1974) The physiology of muscle receptors. In: Hunt CC (ed) Muscle receptors. Springer, Berlin Heidelberg New York, pp 191–234 (Handbook of sensory physiology, vol III/2)Google Scholar
  35. Jennings HS (1906) Behavior of the lower organisms. Columbia University Press, New York, pp 1–366CrossRefGoogle Scholar
  36. Kafka G (1914) In: Barth JA (ed) Einführung in die Tierpsychologie auf experimenteller und ethologischer Grundlage, vol I. Leipzig, pp 1–593Google Scholar
  37. Kung C (1979) Biology and genetic of Paramecium behavior. In: Breakfield XO (ed) Topics in neurogenetics. Elsevier, New York, pp 1–26Google Scholar
  38. Kung C, Saimi Y (1982) The physiological basis of taxes in Paramecium. Annu Rev Physiol 44: 519–534PubMedCrossRefGoogle Scholar
  39. Loewenstein WR (1960) Biological transducers. Sci Am 203: 98–108PubMedCrossRefGoogle Scholar
  40. Machemer H (1974) Frequency and directional responses of cilia to membrane potential changes in Paramecium. J Comp Physiol 92:293–316Google Scholar
  41. Machemer H (1976) Interactions of membrane potential and cations in regulation of ciliary activity. J Exp Biol 65: 427–448PubMedGoogle Scholar
  42. Machemer H (1977) Motor activity and bioelectric control of cilia. Fortschr Zool 24: 195–210PubMedGoogle Scholar
  43. Machemer H (1985a) Mechanoresponses in Protozoa. In: Song PS, Colombetti G, Lenci F (eds) Sensory perception and transduction in aneural organisms. Plenum, New York, 179–210CrossRefGoogle Scholar
  44. Machemer H (1985b) Was bewegt einen Einzeller? Festschrift B. Rensch. SchriftenreiheGoogle Scholar
  45. der Westf. Wilhelms-Universität Münster 12Google Scholar
  46. Machemer H, De Peyer JE (1977) Swimming sensory cells: Electrical membrane parameters, receptor properties and motor control in ciliated protozoa. Verh Dtsch Zool Ges Erlangen 1977: 86–110Google Scholar
  47. Machemer H, De Peyer JE (1982) Analysis of ciliary beating frequency under voltage clamp control of the membrane. Cell Motil [Suppl] 1: 205–210CrossRefGoogle Scholar
  48. Machemer H, Machemer-Röhnisch S (1984) Mechanical and electrical correlates of mechano-receptor activation of the ciliated tail in Paramecium. J Comp Physiol A 154: 273–278CrossRefGoogle Scholar
  49. Machemer H, Ogura A (1979) Ionic conductances of membranes in ciliated and deciliated Paramecium. J Physiol 296:49–60Google Scholar
  50. Machemer-Röhnisch S, Machemer H (1984) Receptor current following controlled stimulation of immobile tail cilia in Paramecium caudatum. J Comp Physiol A 154:263–271Google Scholar
  51. Meech RW (1978) Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng 7: 1–18PubMedCrossRefGoogle Scholar
  52. Methfessel C (1983) Statistische Analyse von Einzelkanal-Fluktuationen am Beispiel des Calcium-abhängigen Kalium-Kanals von kultivierten embryonalen Skelettmuskelzellen der Ratte. Dissertation, Ruhr-Universität, BochumGoogle Scholar
  53. Methfessel C, Boheim G (1982) The gating of single calcium-dependent potassium channels by an activation/blockade mechanism. Biophys Struct Mech 9: 35–60PubMedCrossRefGoogle Scholar
  54. Naitoh Y (1984) Mechanosensory transduction in protozoa. In: Colombetti G, Lenci F (eds) Membranes and sensory transduction. Plenum, New York, pp 113–135Google Scholar
  55. Naitoh Y, Eckert R (1969 a) Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation. Science 164: 963–965Google Scholar
  56. Naitoh Y, Eckert R (1969b) Ciliary orientation: controlled by cell membrane or by intracellular fibrils? Science 166: 1633–1635PubMedCrossRefGoogle Scholar
  57. Naitoh Y, Eckert R (1973) Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential. J Exp Biol 54:53–65Google Scholar
  58. Naitoh Y, Kaneko M (1972) Reactivated Triton-extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 176: 523–524CrossRefGoogle Scholar
  59. Naitoh Y, Eckert R, Friedman K (1972) A regenerative calcium response in Paramecium. J Exp Biol 56: 667–681PubMedGoogle Scholar
  60. Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in the Paramecium surface membrane. J Comp Physiol 135: 233–242CrossRefGoogle Scholar
  61. Ogura A, Takahashi M (1976) Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature 264: 170–172PubMedCrossRefGoogle Scholar
  62. Onimaru H, Naitoh Y, Ohki K, Nozawa Y (1979) Electrophysiological studies on the membrane of Tetrahymena. Dobutsugaku Zasshi (Zool Mag Tokyo) 88: 529Google Scholar
  63. Sakmann B, Neher E (1983) (eds) Single channel recording. Plenum, New York, pp 1–503Google Scholar
  64. Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarizing mechanoreceptor potential of Paramecium tetraurelia. J Exp Biol 103: 253–264Google Scholar
  65. Schmidt-Nielsen K (1975) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge, pp 1–560Google Scholar
  66. Schultz JE, Grünemund R, von Hirschhausen R, Schönefeld U (1984) Ionic regulation of cyclic AMP levels in Paramecium tetraurelia. FEBS Lett 167: 113–116PubMedCrossRefGoogle Scholar
  67. Stommel EW, Stephens RE, Alkon DL (1980) Motile statocyst cilia transmit rather than directly transduce mechanical stimuli. J Cell Biol 87: 652–662PubMedCrossRefGoogle Scholar
  68. Swerup C, Rydqvist B, Ottoson D (1983) Time characteristics and potential dependence of early and late adaptation in the crustacean stretch receptor. Acta Physiol Scand 119: 91–99PubMedCrossRefGoogle Scholar
  69. Terzuolo CA, Knox CK (1971) Static and dynamic behaviour of the stretch receptor organ of crustacea. In: Loewenstein WR (ed) Principles of receptor physiology. Springer, Berlin Heidelberg New York, pp 500–522 (Handbook of sensory physiology, vol I )Google Scholar
  70. Thurm U (1982) Grundzüge der Transduktionsmechanismen in Sinneszellen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik - Ein Lehrbuch. Springer, Berlin Heidelberg New York, pp 681–691Google Scholar
  71. Tillotson D, Gorman ALF (1980) Nonuniform Ca2+ buffer distribution in a nerve cell body. Nature 286: 816–817PubMedCrossRefGoogle Scholar
  72. Van Houten J, Hauser DCR, Levandowsky M (1981) Chemosensory behavior in Protozoa. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of Protozoa, vol 4. Academic, New York, pp 67–124Google Scholar
  73. Wiederhold ML (1976) Mechanosensory transduction in “sensory” and “motile” cilia. Annu Rev Biophys Bioeng 5: 39–62PubMedCrossRefGoogle Scholar
  74. Wood DC (1975) Protozoa as models of stimulus transduction. In: Eisenstein EM (ed) Aneural organisms in neurobiology. Plenum, New York, pp 5–23 (Advances in behavioral biology, vol 13 )Google Scholar
  75. Zucker RS, Stockbridge N (1983) Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse. J Neurosci 3: 1263–1269PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. Machemer
    • 1
  • J. W. Deitmer
    • 2
  1. 1.Fakultät für BiologieRuhr-UniversitätBochumGermany
  2. 2.Institut für Zoologie IUniversität DüsseldorfDüsseldorfGermany

Personalised recommendations