Skip to main content

Amphibian Skin as a Model in Studies on Epidermal Homeostasis

  • Conference paper
Skin Models

Abstract

Models to study function and disease of skin may for instance imply the use of a particular animal species or preparation as especially useful in studies of a particular function, studies on a particular (biochemical, physiological or morphological) parameter as indicator of a particular function, or computer simulating models. The present paper will deal with amphibian and particularly toad skin as a suitable model to study epidermal homeostasis defined as maintenance of tissue (population) size. This intriguing question as to how the appropriate proportions of proliferating and differentiating cells are maintained to ensure a constant epidermal cell pool is of general biological importance (Fig. 1). According to the general concept of tissue homeostasis, in a renewing tissue like the epidermis, the efflux in terms of keratinization and exfoliation must — over a period of time — be counterbalanced by a corresponding number of cell divisions, when the tissue is in equilibrium. Later we shall see, that the three parameters of paramount importance in studies on epidermal homeostatis: influx, cell pool size, and efflux, can quite easily be assessed in toad skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendsen J (1956) Shedding of the skin of the common toad, Bufo bufo. Vidensk Medd dansk nat hist. Foren 11: 211–225

    Google Scholar 

  2. Blaylock LA, Ruibal R, Platt-Aloia K (1976) Skin structure and wiping behaviour of phyllomedusine frogs. Copeia: 283–295

    Google Scholar 

  3. Budtz PE (1977) Aspects of moulting in Anurans and its control. Symp Zool Soc Lond 39: 317–334

    CAS  Google Scholar 

  4. Budtz PE (1979) Epidermal structure and dynamics of the toad, Bufo bufo, deprived of the pars distalis of the pituitary gland. J Zool Lond 189: 57–92

    Article  Google Scholar 

  5. Budtz PE (1982) Time-dependent effects of removal of the pars distalis of the pituitary gland on toad epidermal cell and tissue kinetic parameters. Cell Tissue Kinet 15: 507–519

    PubMed  CAS  Google Scholar 

  6. Budtz PE (1985) Epidermal tissue homeostasis. I. Cell pool size, cell birth rate, and cell loss by moulting in the intact toad, Bufo bufo. Cell Tissue Kinet 18: 521–532

    PubMed  CAS  Google Scholar 

  7. Budtz PE (1985) Epidermal tissue homeostasis. II. Cell pool size, cell birth rate, and cell loss in toads deprived of the pars distalis of the pituitary gland. Cell Tissue Kinet 18: 533–542

    PubMed  CAS  Google Scholar 

  8. Budtz PE, Larsen LO (1973) Structure of the toad epidermis during the moulting cycle.I. Light microscopic observations in Bufo bufo. Z Zellforsch 144: 353–365

    Article  PubMed  CAS  Google Scholar 

  9. Budtz PE, Larsen LO (1975) Structure of the toad epidermis during the moulting cycle.II. Electron microscopic observations on Bufo bufo. Cell Tiss Res 159: 459–483

    Article  CAS  Google Scholar 

  10. Breckenridge WR, Murugapillai R (1974) Mucous glands in the skin of Ichthyophis glutinosus ( Amphibia: Gymnophiona). Ceylon J Sci (Bio Sci ) 11: 43–52

    Google Scholar 

  11. Campbell JP, Aiyawar RM, Berry ER, Huf EG (1967) Electrolytes in frog skin secretions. Comp Biochem Physiol 23: 213–223

    Article  PubMed  CAS  Google Scholar 

  12. Chiakulas JJ, Scheving LE (1967) The effects of the presence or absence of the pituitary gland on the daily rhythmicity of mitotic rates in urodele larval tissues. In: Mayersbach H von (ed) Cellular aspects of biorhythms. Springer, Berlin, p 155

    Google Scholar 

  13. Clarke RM (1973) Progress in measuring the epithelial turnover in the villus of the small intestine. Digestion 8: 161

    Article  PubMed  CAS  Google Scholar 

  14. Dapson RW (1970) Histochemistry of mucus in the skin of the frog, Rana pipiens. Anat Rec 166: 615–626

    Article  PubMed  CAS  Google Scholar 

  15. Delsol M, Flatin J (1971) Tissus conjonctifs et métamorphose chez les Batrachiens. Lyon Med 226: 615–626

    Google Scholar 

  16. Dournon C, Chibon P (1974) Influence de la temperature, de l’age et des conditions hormonales (thyroxine) sur la proliferation cellulaire chez la jeune larve et pendant la métamorphose due crapaud Bufo bufo L. ( Amphibian Anoure ). Wilh Roux Archiv 175: 27–47

    Google Scholar 

  17. Elkan E (1976) Ground substance: an anuran defence against desiccation. In: Lofts B (ed) Physiology of the Amphibia, vol 3. Academic Press, New York San Francisco London, p 101

    Google Scholar 

  18. Farquhar MG, Palade GE (1965) Cell junctions in amphibian skin. J Cell Biol 26: 263–291

    Article  PubMed  CAS  Google Scholar 

  19. Fox H (1977) The anuran tadpole skin: changes occurring in it during metamorphosis and some comparisons with that of the adult. Symp zool Soc Lond 39: 269–289

    Google Scholar 

  20. Fox H (1981) Cytological and morphological changes during amphibian metamorphosis. In: Gilbert LI, Frieden E (ed) Metamorphosis: a problem in developmental biology, 2nd edn. Plenum Publ Corp, p 327

    Google Scholar 

  21. Habermehl GG (1974) Venoms of amphibia. Chem Zool 9: 161–183

    CAS  Google Scholar 

  22. Hoffman CW, Dent JN (1977) Hormonal effects on mitotic rhythm in the epidermis of the red-spotted newt. Gen Comp Endocr 32: 512–521

    Article  PubMed  CAS  Google Scholar 

  23. Hoffman CW, Dent JN (1977) Hormonal regulation of cellular proliferation in the epidermis of the red-spotted newt. Gen Comp Endocr 32: 522–530

    Article  PubMed  CAS  Google Scholar 

  24. Keiding N, Hartmann NR, Miller U (1984) Diurnal variation in influx and transition intensities in the S phase of hamster cheek pouch epithelium cells. In: Edmunds LN (ed) Cell cycle clocks. Dekker, New York, p 135

    Google Scholar 

  25. Kelly DE (1966) Fine structure of desmosomes, hemidesmosomes and an adepidermal globular layer in developing newt epidermis. J Cell Biol 28: 51–73

    Article  PubMed  CAS  Google Scholar 

  26. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26: 239–257

    Article  PubMed  CAS  Google Scholar 

  27. Larsen LO (1976) Physiology of moulting. In: Lofts B (ed) Physiology of amphibians, vol 3. Academic Press, New York San Francisco London, p 53

    Google Scholar 

  28. Lavker RM (1974) Horny cell formation in the epidermis of Rana pipiens. J Morphol 142: 365–378

    Article  PubMed  CAS  Google Scholar 

  29. Levi H, Nielsen A (1982) An autoradiographic study of cell kinetics in epidermis of the toad Bufo bufo bufo ( L. ). J Invest Dermatol 79: 292–296

    Google Scholar 

  30. Lindemann B, Voute C (1976) Structure and function of the epidermis. In: Llinas R, Precht W (ed) Frog neurobiology. Springer, Berlin Heidelberg New York, p 169

    Google Scholar 

  31. Marks R (1980) Is epidermal homeostasis a necessity? — comments on epidermal growth control. Br J Dermatol 103: 697–702

    Article  PubMed  CAS  Google Scholar 

  32. Martinez-Palomo A, Erlij D, Bracho H (1971) Localization of permeability barriers in the frog skin epithelium. J Cell Biol 50: 277–287

    Article  PubMed  CAS  Google Scholar 

  33. Mathews MB (1975) Connective tissue. Macromolecular structure and evolution. Springer, Berlin Heidelberg New York (Molecular biology biochemistry and biophysics, vol 19 )

    Google Scholar 

  34. McGarry MP, Vanable JW (1969) The role of cell division in Xenopus laevis skin gland development. Develop Biol 20: 291–303

    Article  PubMed  CAS  Google Scholar 

  35. Nafstad PHJ, Baker RE (1973) Comparative ultrastructural study of normal and grafted skin in the frog, Rana pipiens, with special reference to neuroepithelial connections. Z Zellforsch 139: 451–462

    Article  PubMed  CAS  Google Scholar 

  36. Picard JJ (1976) Ultrastructure of the cement gland of Xenopus laevis. J Morphol 148: 193208

    Google Scholar 

  37. Quay WB (1972) Integument and the environment: glandular composition, function, and evolution. Am Zoologist 12: 95–108

    Google Scholar 

  38. Rosenberg M, Lewinson D, Warburg MR (1982) Ultrastructural studies of the epidermal Leydig cell in larvae of Salamandra salamandra ( Caudata, Salamandrida). J Morphol 174: 275–281

    Google Scholar 

  39. Rudall KM (1947) X-ray studies of the distribution of protein chain types in the vertebrate epidermis. Biochem Biophys Acta 1: 549–562

    Article  CAS  Google Scholar 

  40. Schultze B (1969) DNA synthesis. In: Schultze B (ed) Autoradiography at the cellular level, 2nd edn. Academic Press, New York London, p 76 (Pollister AW (ed) Physical techniques in biological research, vol 3 )

    Google Scholar 

  41. Schultze B (1981) Double labeling autoradiography. Cell kinetic studies with 3H- and 14C-thymidine. J Histochem Cytochem 29: 109–116

    Article  PubMed  CAS  Google Scholar 

  42. Shienvold FL, Kelly DE (1976) The hemidesmosome: new fine structural features revealed by freeze-fracture technique. Cell Tissue Res. 172: 289–307

    Article  PubMed  CAS  Google Scholar 

  43. Shoemaker VH, McClanahan LL (1975) Evaporative water loss, nitrogen excretion and osmoregulation in phyllomedusine frogs. J Comp Physiol 100: 331–345

    CAS  Google Scholar 

  44. Spearman RIC (1968) Epidermal keratinization in the salamander and a comparison with other amphibia. J Morphol 125: 129–144

    Article  PubMed  CAS  Google Scholar 

  45. Spearman RIC (1973) The integument. Cambridge University Press

    Google Scholar 

  46. Vellano C, Lodi G, Gani G, Sacerdote M, Mazzi V (1970) Analysis of the integumentary effect of prolactin in the hypophysectomized crested newt. Monit Zool Ital4(NS): 115–146

    Google Scholar 

  47. Whitear M (1975) Flask cells and epidermal dynamics in frog skin. J Zool Lond 175: 107–149

    Article  Google Scholar 

  48. Whitear M (1977) A functional comparison between the epidermis of fish and amphibians. Symp zool Soc Lond 39: 291–313

    Google Scholar 

  49. Wright ML (1973) DNA synthesis during differentiation of tadpole shank epidermis. J Exp Zool 186: 237–256

    Article  PubMed  CAS  Google Scholar 

  50. Wright ML (1977) Regulation of cell proliferation in tadpole limb epidermis by thyroxine. J Exp Zool 202: 223–234

    Article  CAS  Google Scholar 

  51. Wright ML, Majerowski MA, Lukas SM, Pike PA (1979) Effect of prolactin on growth, development, and epidermal cell proliferation in the hindlimb of the Rana pipiens tadpole. Gen Comp Endocr 39: 53–62

    Article  CAS  Google Scholar 

  52. Wright ML, Sicbaldi EM, Loveridge KM, Pike PA, Majerowski MA (1981) Cell population kinetics in tadpole limb epidermis during thyroxine-induced, spontaneous, and prolactininhibited metamorphosis. Gen Comp Endocr 43: 451–461

    Article  PubMed  CAS  Google Scholar 

  53. Wright NA, Appleton DR (1980) The metaphase arrest technique. A critical review. Cell Tissue Kinet 13: 643–663

    Google Scholar 

  54. Wright NA, Irwin M (1982) The kinetics of villus cell populations in the mouse small intestine. I. Normal villi: the steady state requirement. Cell Tissue Kinet 15: 595–609

    PubMed  CAS  Google Scholar 

  55. Wyllie AH (1981) Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA (ed) Cell death in biology and pathology. Chapman and Hall, London New York, p 9

    Google Scholar 

  56. Yoshizato K, Yasumasu I (1972) Effect of prolactin on the tadpole fin. V. Stimulatory effect of prolactin on the incorporation of 3H-thymidine into DNA of the tadpole tail fin. Developm Growth Diff 14: 129–132

    Article  CAS  Google Scholar 

  57. Zadunaisky J, Lande MA (1972) Calcium content and exchange in amphibian skin and its isolated epithelium. Am J Physiol 222: 1309–1315

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Budtz, P.E. (1986). Amphibian Skin as a Model in Studies on Epidermal Homeostasis. In: Marks, R., Plewig, G. (eds) Skin Models. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70387-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70387-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70389-8

  • Online ISBN: 978-3-642-70387-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics