Skip to main content

Part of the book series: Haematology and Blood Transfusion / Hämatologie und Bluttransfusion ((HAEMATOLOGY,volume 29))

  • 59 Accesses

Abstract

The main objective of cancer molecular biology is to identify cancer genes. Despite fierce efforts, this objective has still not been met [1–3]. As yet the only known cancer genes are the transforming onc genes of retroviruses. Typically these viruses initiate and maintain cancers with autonomous transforming genes that are dominant in susceptible cells [5]. The discovery of Single gene determinants of cancer in retroviruses has become a precedent that has infected cancer gene research. It has made retroviral onc genes the favorite models of cellular oncogenes, although the relevance of single-gene models to virus-negative tumors is as yet unknown. Fortunately, onc genes are either detrimental or at least useless to the viability of the virus and thus are not maintained by retroviruses. They are the produets of rare, genetic accidents, generated by illegitimate recombinations between retroviruses and cellular genes, termed proto-onc genes.

This lecture was also presented at the “International Conference on RNA Tumor Viruses in Human Cancer,” Denver, Colorado, United States, 10–14 June, 1984. A portion of this lecture will also be printed as part of a review in Science, May 10, 1985

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rous P (1967) The callenge to man of the neoplastic cell. Science 157: 25 la. Berenblum I (1981) Sequential aspects of chemical carcinogenesis: skin. In: Becker F (ed) Cancer, vol 1. Plenum, New York

    Google Scholar 

  2. Knudson AG (1981) Genetic influences in human tumors. In: Becker F (ed) Knudson AG 1. Plenum New York

    Google Scholar 

  3. Foulds L (1969) Neoplastic development, vols 1 and 2. Academic, New York

    Google Scholar 

  4. Cooper GM (1982) Cellular transforming genes. Science 218: 801

    Article  Google Scholar 

  5. Duesberg PH (1983) Retroviral transforming genes in normal cells? Nature 304: 219

    Article  PubMed  CAS  Google Scholar 

  6. Heldin C-H, Westermark B (1984) Growth factors: mechanism of action and relation to oncogenes. Cell 37: 9

    Article  PubMed  CAS  Google Scholar 

  7. Peterson TA, Yochem J, Byers B, Nunn MF, Duesberg PH, Doolittle RF, Reed SI (1984) A relationship between the yeast cell cycle genes CDC4 and CDC36 and the ets sequence of oncogenic virus E26. Nature 309: 556

    Article  PubMed  CAS  Google Scholar 

  8. Martin GS (1970) Rous sarcoma virus: a funetion required for the maintenance of the transformed State. Nature 221: 1021

    Article  Google Scholar 

  9. Shih TY, Weeks MO, Young MA, Scolnick EM (1979) p21 of Kirsten murine sarcoma virus is thermolabile in a viral mutant temperature sensitive for the maintenance of transformation. J Virol 31: 546

    Google Scholar 

  10. Pawson A, Guyden J, Kung T-H, Radke K, Gilmore T, Martin GS (1980) A strain of Fujinami sarcoma virus which is temperature-sensitive in protein phosphorylation and cellular transformation. Cell 22: 767

    Article  PubMed  CAS  Google Scholar 

  11. Lee W-H, Bister K, Moscovici C, Duesberg PH (1981) Temperature-sensitive mutants of Fujinami sarcoma virus: tumorigenicity and reversible phosphorylation of the transforming pl40 protein. J Virol 38: 1064

    PubMed  CAS  Google Scholar 

  12. Palmieri S, Beug H, Graf T (1982) Isolation and characterization of four new temperature- sensitive mutants of avian erythroblastosis virus ( AEV ). Virology 123: 296

    Google Scholar 

  13. Duesberg PH, Vogt PK (1970) Differences between the ribonucleic acids of transform ing and nontransforming avian tumor viruses, Proc Natl Acad Sei USA 67: 1673

    Article  CAS  Google Scholar 

  14. Martin GS, Duesberg PH (1972) The a-subunit in the RNA of transforming avian tumor viruses: I. Occurrence in different virus strains. II. Spontaneous loss resulting in nontransforming variants. Virology 47: 494

    Google Scholar 

  15. Wei C-M, Lowy DR, Scolnick EM (1980) Mapping of transforming region of the Harvey murine sarcoma virus genome by using insertion-deletion mutants constructed in vitro. Proc Natl Acad Sei USA 77: 4674

    Article  CAS  Google Scholar 

  16. Goff SP, Baltimore D (1982) The cellular oncogene of the Abelson murine leukemia virus genome. In: Klein G (ed) Advances in viral oncology, vol 1. Raven, New York

    Google Scholar 

  17. Srinivasan A, Dunn CY, Yuasa Y, Devare SG, Reddy EP, Aaronson SA (1982) Abelson murine leukemia virus: structural requirements for transforming gene funetion. Proc Natl Acad Sei USA 79: 5508

    Article  CAS  Google Scholar 

  18. Evans LH, Duesberg PH (1982) Isolation of a transformation-defective deletion mutant of Moloney murine sarcoma virus. J Virol 41: 735

    PubMed  CAS  Google Scholar 

  19. Duesberg PH, Phares W, Lee WH (1983) The low tumorigenic potential of PRCII, among viruses of the Fujinami sarcoma virus subgroup, corresponds to an internal fps deletion of the transforming gene. Virology 131: 144

    Article  PubMed  CAS  Google Scholar 

  20. Duesberg PH (1980) Transforming genes of retroviruses. Cold Spring Harbor SympQuant Biol 44: 13

    PubMed  CAS  Google Scholar 

  21. Mellon P, Pawson A, Bister K, Martin GS, Duesberg PH (1978) Specific RNA sequences and gene produets of MC29 avian acute leukemia virus. Proc Natl Acad Sei USA 75: 5874

    Article  CAS  Google Scholar 

  22. Robins T, Bister K, Garon C, Papas T, Duesberg PH (1982) Structural relationship between a normal chicken DNA locus and the transforming gene of the avian acute leukemia virus MC29. J Virol 41: 635

    PubMed  CAS  Google Scholar 

  23. Duesberg PH, Bister K, Vogt PK (1977) The RNA of avian acute leukemia virus MC29. Proc Natl Acad Sei USA 74: 4320

    Article  CAS  Google Scholar 

  24. Bister K, Duesberg PH (1982) Genetic structure and transforming genes of avian retroviruses. In: Klein G (ed) Advances in viral oncology, vol 1. Raven, New York

    Google Scholar 

  25. Papas TS, Kan NK, Watson DK, Flordellis CS, Psallidopoulos MC, Lautenberger J, Samuel KP, Duesberg PH (1984) myc-Related genes in viruses and cells. In: Vande Woude GF, Levine AJ, Topp WC, Watson JD (eds) Cancer cells 2/oncogenes and viral genes. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  26. Watson DK, Reddy EP, Duesberg PH, Papas TS (1983) Nucleotide sequence analysis of the chicken c-myc gene reveals homologous and unique coding regions by comparison with the transforming gene of avian myelocytomatosis virus MC29, Agag-myc. Proc Natl Acad Sei USA 80: 2146

    Article  CAS  Google Scholar 

  27. Shih C-K, Linial M, Goodenow MM, Hayward WS (1984) Nucleotide sequence 5’ of the chicken c-myc coding region: localization of a noncoding exon that is absent from myc transcripts in most avian leucosis virus-induced lymphomas. Proc Natl Acad Sei USA 81: 4697

    Article  CAS  Google Scholar 

  28. Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS (1984) Nucleotide sequence of avian carcinoma virus MH2: two potential one genes, one related to avian virus MC29, the other to murine sarcoma virus 3611. Proc Natl Acad Sei USA 81: 3000

    Article  CAS  Google Scholar 

  29. Kan NC, Flordellis CS, Mark GE, Duesberg PH, Papas TS (1984) A common one gene sequence transduced by avian Carcinoma virus MH2 and by murine sarcoma virus 3611. Science 223: 813

    Article  PubMed  CAS  Google Scholar 

  30. Schwartz DE, Tizard R, Gilberg W (1983) Nucleotide sequence of Rous sarcoma virus. Cell 32: 853

    Article  PubMed  CAS  Google Scholar 

  31. Pachl C, Biegalke B, Linial M (1983) RNA and protein encoded by MH2 virus: evidence for subgenomic expression of \-myc. J Virol 45: 133

    PubMed  CAS  Google Scholar 

  32. Hann SR, Abrams HD, Rohrschneider LR, Eisenman RN (1983) Proteins encoded by y-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants änd bursal lymphoma cell lines. Cell 34: 781

    Article  Google Scholar 

  33. Alitalo K, Ramsay G, Bishop JM, Pfeiffer SO, Colby WW, Levinson AD (1983) Identification of nuclear proteins encoded by viral and cellular myc oncogenes. Nature 306: 274

    Article  PubMed  CAS  Google Scholar 

  34. Chiswell DJ, Ramsey G, Hayman MJ (1981) Two virus-speeifie RNA species are present in cells transformed by defective leukemia virus OKIO. J Virol 40: 301

    PubMed  CAS  Google Scholar 

  35. Levy LS, Gardner MB, Casey JW (1984) Isolation of a feline leukaemia provirus containing the oncogene myc from a feline lymphosarcoma. Nature 308: 853

    Article  PubMed  CAS  Google Scholar 

  36. Seeburg PH, Lee W-H, Nunn MF, Duesberg PH (1984) The 5’ ends of the transforming gene of Fujinami sarcoma virus and of the cellular proto-fps gene are not colinear. Virology 133: 460

    Article  PubMed  CAS  Google Scholar 

  37. Lee W-H, Phares W, Duesberg PH (1983) Structural relationship between chicken DNA locus, proto-fps, and the transforming gene of Fujinami sarcoma virus (Agag-fps). Virology 129: 79

    Article  PubMed  CAS  Google Scholar 

  38. Rushlow KE, Lautenberger JA, Papas TS, Baluda MA, Perbai B, Chirikjian JG, Reddy EP (1982) Nucleotide sequence of the transforming gene of avian myeloblastosis virus. Science 216: 1421

    Article  PubMed  CAS  Google Scholar 

  39. Klempnauer K-H, Gonda TS, Bishop JM (1982) Nucleotide sequence of the retroviral leukemia gene v-myb and its progenitor c-myb: the architecture of a transduced oncogene. Cell 31: 453

    Article  PubMed  CAS  Google Scholar 

  40. Nunn MF, Seeburg PH, Moscovici C, Duesberg PH (1983) Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306: 391

    Article  PubMed  CAS  Google Scholar 

  41. Nunn M, Weiher H, Bullock P, Duesberg PH (1984) Avian erythroblastosis virus E26: nucleotide sequence of the tripartite one gene and of the LTR, and analysis of the cellular prototype of the viral ets sequence. Virology 139, 330: 339

    Google Scholar 

  42. Takeya T, Hanafusa H (1983) Structure and sequence of the cellular gene homologous to the src gene of RSV and the mechanism of the generation of the viral transforming gene. Cell 32: 881

    Article  PubMed  CAS  Google Scholar 

  43. Campisi J, Gray HE, Bardee AB, Dean M, Sonenshein GE (1984) Cell-cycle control of c-myc but not c-ras expression is lost following chemical transformation. Cell 36: 241

    Article  PubMed  CAS  Google Scholar 

  44. Takeya T, Hanafusa H (1982) DNA sequence of the viral and cellular src gene of chickens. II. Comparison of the src genes of two strains of avian sarcoma virus and of the cellular homolog. J Virol 44: 12

    PubMed  CAS  Google Scholar 

  45. Parker RC, Varmus HE, Bishop JM (1984) Expression of v-src and chicken c-src in rat cells demonstrates qualitative differences between pp60v-src and pp60c-src. Cell 37: 131

    Article  PubMed  CAS  Google Scholar 

  46. Parsons JT, Bryant D, Wilkerson V, Gilmartin G, Parsons SJ (1984) Site-directed mutagenesis of Rous sarcoma virus pp60src: identification of functional domains required for transformation, In: Vande Woude GF, Levine AJ, Topp WC, Watson JD (eds) Cancer cells 2/oncogenes and viral genes. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  47. Shalloway D, Coussens PM, Yaciuk P (1984) c-src and src homolog overexpression in mouse cells. In: Vande Woude GF, Levine AJ, Topp WC, Watson JD (eds) Cancer cells 2/oncogenes and viral genes. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  48. Miller AD, Curran T, Verma IM (1984) c-fos Protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36: 51

    Google Scholar 

  49. Sodroski JG, Goh WC, Haseltine WA (1984) Transforming potential of a human protooncogene (c-fps/fes) locus. Proc Natl Acad Sei USA 81: 3039

    Article  CAS  Google Scholar 

  50. Iba H, Takeya T, Cross FR, Hanafusa T, Hanafusa H (1984) Rous sarcoma virus variants that carry the cellular src gene instead of the viral src gene cannot transform chicken embryo fibroblasts. Proc Natl Acad Sei USA 81: 4424

    Article  CAS  Google Scholar 

  51. Wilhelmsen KC, Tarpley WG, Temin HM (1984) Identification of some of the parameters governing transformation by oncogenes in retroviruses. In: Vande Woude GF, Levine AJ, Topp WC, Watson JD (eds) Cancer cells 2/oncogenes and viral genes. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  52. Blair DG, Oskarsson M, Wood TG, McClements WC, Fischinger PJ, Vande Woude GF (1981) Activation of the transforming potential of a normal cell sequence: a molecular model for oncogenesis. Science 212: 941

    Article  PubMed  CAS  Google Scholar 

  53. Chang EH, Furth ME, Scolnick EM, Lowy DR (1982) Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297: 479

    Article  PubMed  CAS  Google Scholar 

  54. Land H, Parada LF, Weinberg RA (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304: 596

    Article  PubMed  CAS  Google Scholar 

  55. Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multistep carcinogenesis. Science 222: 771

    Article  PubMed  CAS  Google Scholar 

  56. Gross L (1970) Oncogenic viruses. Pergamon, New York

    Google Scholar 

  57. Tooze J (ed) (1973) The molecular biology of tumour viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  58. Weiss RA, Teich NM, Varmus H, Coffin JM (eds) (1982) Molecular biology of tumor viruses: RNA tumor viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  59. Huebner RJ, Todaro GJ (1969) Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sei USA 64: 1087

    Article  CAS  Google Scholar 

  60. Bishop JM, Courtneidge SA, Levinson AD, Oppermann H, Quintreil N, Sheiness DK, Weiss SR, Varmus HE (1980) Origin and funetion of avian retrovirus transforming genes. Cold Spring Harbor Symp Quant Biol44: 919

    Google Scholar 

  61. Bishop JM (1981) Enemies within: the genesis of retrovirus oncogenes. Cell 23: 5

    Article  PubMed  CAS  Google Scholar 

  62. Wang L-H, Snyder P, Hanafusa T, Moscovici C, Hanafusa H (1980) Comparative analysis of cellular and viral sequences related to sarcomagenic cell transformation. Cold Spring Harbor Symp Quant Biol 44: 766

    Google Scholar 

  63. Karess RE, Hayward WS, Hanafusa H (1980) Transforming proteins encoded by the cellular information of recovered avian sarcoma viruses. Cold Spring Harbor Symp Quant Biol 44: 765

    PubMed  CAS  Google Scholar 

  64. Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290: 475

    Article  PubMed  CAS  Google Scholar 

  65. Klein G (1981) The role of gene dosage and genetic transposition in carcinogenesis. Nature 294: 313

    Article  PubMed  CAS  Google Scholar 

  66. Tabin CJ, Bradley SM, Bargmann CI, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowy DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300: 143

    Article  PubMed  CAS  Google Scholar 

  67. Cooper GM, Neiman PE (1981) Two distinet candidate transforming genes of lymphoid leukosis virus-induced neoplasms. Nature 292: 857

    Article  PubMed  CAS  Google Scholar 

  68. Diamond A, Cooper GM, Ritz J, Lane M-A (1983) Identification and molecular cloning of the human Blym transforming gene activated in Burkitt’s lymphomas. Nature 305: 112

    Article  PubMed  CAS  Google Scholar 

  69. Ruley HE (1983) Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602

    Article  PubMed  CAS  Google Scholar 

  70. Leder P, Battey J, Lenoir G, Moudling C, Murphy W, Potter H, Stewart T, Taub R (1983) Translocations among antibody genes in human cancer. Science 222: 765

    Article  PubMed  CAS  Google Scholar 

  71. Adams JM, Gerondakis S, Webb E, Carcoran LM, Cory S (1983) Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytoma and is rearranged similarly in human Burkitt lymphomas. Proc Natl Acad Sei USA 80: 1982

    Article  CAS  Google Scholar 

  72. Klein G, Klein E (1984) Oncogene activation and tumor progression. Carcinogenesis 5: 429

    Article  PubMed  CAS  Google Scholar 

  73. Slamon DJ, deKernion JB, Verma IM, Cline MJ (1984) Expression of cellular oncogenes in human malignancies. Science 224: 256

    Article  PubMed  CAS  Google Scholar 

  74. Payne GS, Bishop JM, Varmus HE (1982) Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295: 209

    Article  PubMed  CAS  Google Scholar 

  75. Tsichlis PN, Stauss PG, Hu LF (1983) A common region for proviral DNA integration in MoMuLV-induced rat thymic lymphomas. Nature 302: 445

    Article  PubMed  CAS  Google Scholar 

  76. Yoshimura FK, Levine KL (1983) AKR thymic lymphomas involving mink cell focus- inducing leukemia viruses have a common region of provirus integration. J Virol 45: 576

    PubMed  CAS  Google Scholar 

  77. Kettmann R, Deschamps J, Cleuter Y, Couez D, Burny A, Marbaix G (1982) Leukemogenesis by bovine leukemia virus: proviral DNA integration and lack of RNA expression of viral long terminal repeat and 3’ proximate cellular sequences. Proc Natl Acad Sei USA 79: 2465

    Article  CAS  Google Scholar 

  78. Miller JM, Miller LD, Olson C, Gillette KS (1969) Virus-like particles in phytohemagglutinin- stimulated lymphocyte cultures with reference to bovine lymphosarcoma. J Natl Cancer Inst 43: 1297

    PubMed  CAS  Google Scholar 

  79. Westaway D, Payne G, Varmus HE (1984) Proviral deletions and oncogene base-substitutions in insertionally mutagenized c-myc alleles may contribute to the progression of avian bursal tumors. Proc Natl Acad Sei USA 81: 843

    Article  CAS  Google Scholar 

  80. Klein G (1983) Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men. Cell 32: 311

    Article  PubMed  CAS  Google Scholar 

  81. Rowley JD (1983) Human oncogene locations and chromosome aberrations. Nature 301: 290

    Article  PubMed  CAS  Google Scholar 

  82. Battey J, Moulding C, Taub R, Murphy W, Stewart T, Potter H, Lenoir G, Leder P (1983) The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34: 779

    Article  PubMed  CAS  Google Scholar 

  83. Gelmann E, Psallidopoulos MC, Papas TS, Dalla-Favera R (1983) Identification of reciprocal translocation sites within the c-myc oncogene and Immunoglobulin fi locus in a Burkitt lymphoma. Nature 306: 799

    Article  PubMed  CAS  Google Scholar 

  84. Croce CM, Thierfelder W, Erikson J, Nishikura K, Finan J, Lenoir GM, Nowell PC (1983) Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a CX locus in Burkitt lymphoma cells. Proc Natl Acad Sei USA 80: 6922

    Article  CAS  Google Scholar 

  85. Erikson J, Ar-Rushidi A, Drwinga HL, Nowell PC, Croce CM (1983) Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma. Proc Natl Acad Sei USA 80: 820

    Article  CAS  Google Scholar 

  86. Hollis GF, Mitchell KF, Battey J, Potter H, Taub R, Lenoir GM, Leder P (1984) A variant translocation places the X Immunoglobulin genes 3’ to the c-myc oncogene in Burkitt’s lymphoma. Nature 307: 752

    Article  PubMed  CAS  Google Scholar 

  87. Davis M, Malcolm S, Rabbitts TH (1984) Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature 308: 286

    Article  PubMed  CAS  Google Scholar 

  88. Erikson J, Nishikura K, Ar-Rushdi A, Finan J, Emanuel B, Lenoir G, Nowell PC, Croce CM (1983) Translocation of an immunoglobulin x locus to a region 3’ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sei USA 80: 7581

    Article  CAS  Google Scholar 

  89. Westin EH, Wong-Staal F, Gelmann EP, Dalla Favera R, Papas TS, Lautenberger JA, Eva A, Reddy EP, Tronick SR, Aaronson SA, Gallo RC (1982) Expression of cellular homologues of retroviral one genes in human hematopoietic cells. Proc Natl Acad Sei USA 79: 2490

    Article  CAS  Google Scholar 

  90. Maguire RT, Robins TS, Thorgersson SS, Heilman CA (1983) Expression of cellular myc and mos genes in undifferentiated B-cell lymphomas of Burkitt and non-Burkitt types. Proc Natl Acad Sei USA 80: 1947

    Article  CAS  Google Scholar 

  91. Hamlyn PH, Rabbitts TH (1983) Translocation joins c-myc and Immunoglobulin yl genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 304: 135

    Article  PubMed  CAS  Google Scholar 

  92. Taub R, Moulding C, Battey J, Murphy W, Vasicek T, Lenoir GM, Leder P (1984) Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell 36: 339

    Article  PubMed  CAS  Google Scholar 

  93. Kelly K, Cochran BH, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet derived growth factor. Cell 35: 603

    Article  PubMed  CAS  Google Scholar 

  94. Rabbitts TH, Hamlyn PH, Baer R (1983) Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature 306: 760

    Article  PubMed  CAS  Google Scholar 

  95. Rabbitts TH, Forster A, Hamlyn P, Baer R (1984) Effect of somatic mutation within translocated c-myc genes in Burkitt’s lymphoma. Nature 309: 593

    Article  Google Scholar 

  96. a. Gazin C, Dupont de Dinechin S, Hampe A, Masson J-M, Martin P, Stehelin D, Galibert F (1984) Nucleotide sequence of the human c-myc locus: provocative open reading frame within the first exon. EMBO, J3: 383

    Google Scholar 

  97. Stanton LW, Fahrlander PD, Tesser PM, Marcu KB (1984) Nucleotide sequence comparison of normal and translocated murine m-myc genes. Nature 310: 423

    Article  PubMed  CAS  Google Scholar 

  98. Copeland NG, Cooper GM (1980) Transfection by DNAs of avian erythroblastosis virus and avian myelocytomatosis virus strain MC29. J Virol 33: 1199

    PubMed  CAS  Google Scholar 

  99. Lautenberger JA, Schulz RA, Garon CF, Tsichlis PH, Papas TS (1981) Molecular cloning of avian myeloblastosis virus (MC29) transforming sequences. Proc Natl Acad Sei USA 78: 1518

    Article  CAS  Google Scholar 

  100. Quade K (1979) Transformation of mammalian cells by avian myelocytomatosis virus and avian erythroblastosis virus. Virology 98: 461

    Article  PubMed  CAS  Google Scholar 

  101. Goubin G, Goldman DS, Luce J, Neiman PE, Cooper GM (1983) Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA. Nature 302: 114

    Article  PubMed  CAS  Google Scholar 

  102. Rubin H (1984) Chromosome aberrations and oncogenes: cause or consequence in cancer. Nature 309: 518

    Article  PubMed  CAS  Google Scholar 

  103. Erikson J, Finan J, Tsujimoto Y, Nowell PC, Croce C (1984) The chromosome 14 breakpoint in neoplastic B cells with the t (11; 14) translocation involves the Immunoglobulin heavy chain locus. Proc Natl Acad Sei USA 81: 4144

    Article  CAS  Google Scholar 

  104. Yunis JJ, Oken MD, Kaplan ME, Ensurd KM, Howe RR, Theologides A (1982) Distinetive chromosomal abnormalities in histologic subtypes of non-Hodgkin’s lymphoma. N Engl J Med 307: 1231

    Article  PubMed  CAS  Google Scholar 

  105. Fialkow RJ, Singer JW (1984) Tracing development and cell lineages in human hemopoietic neoplasia. In: Proceedings of the Dahlem Workshop on Leukemia. Springer, Berlin Heidelberg New York Tokyo (in press)

    Google Scholar 

  106. Der JC, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sei USA 79: 3637

    Article  CAS  Google Scholar 

  107. Ellis RW, Lowy DR, Scolnick EM (1982) The viral and cellular p21 (ras) gene family. In: Klein G (ed) Advances in viral oncology, vol 1. Raven, New York

    Google Scholar 

  108. Capon DJ, Chen EY, Levinson AD, Seeburg PH, Goeddel DV (1983) Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302: 33

    Article  PubMed  CAS  Google Scholar 

  109. Finkel T, Channing JD, Cooper GM (1984) Activation of ras genes in human tumors does not affect localization, modification, or nucleotide binding properties of p21. Cell 37: 151

    Article  PubMed  CAS  Google Scholar 

  110. Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder Carcinoma oncogene. Nature 300: 149

    Article  PubMed  CAS  Google Scholar 

  111. Feinberg AP, Vogelstein B, Droller MJ, Baylin SB, Nelkin BD (1983) Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science 220: 1175

    Article  PubMed  CAS  Google Scholar 

  112. Santos E, Martin-Zanca D, Reddy EP, Pierotti MA, Deila Porta G, Barbacid M (1984) Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223: 661

    Article  PubMed  CAS  Google Scholar 

  113. Sager R, Tanaka K, Lau CC, Ebina Y, Anisowicz A (1983) Resistance of human cells to tumorigenesis induced by cloned transforming genes. Proc Natl Acad Sei USA 80: 7601

    Article  CAS  Google Scholar 

  114. Harvey JJ, East J (1971) The murine sarcoma virus ( MSV ). Int Rev Exp Pathol 10: 265

    Google Scholar 

  115. Levy JA (1973) Demonstration of differences in murine sarcoma virus foci formed in mouse and rat cells under a soft agar overlay. J Natl Cancer Inst 46: 1001

    Google Scholar 

  116. Aaronson SA, Todaro Gl (1970) Transformation and virus growth by murine sarcoma virus in human cells. Nature 225: 458

    Article  PubMed  CAS  Google Scholar 

  117. Aaronson SA, Weaver CA (1971) Characterization of murine sarcoma virus ( Kirsten) transformation of mouse and human cells. J Gen Virol 13: 245

    Google Scholar 

  118. Klement V, Friedman M, McAllister R, Nelson-Rees W, Huebner RJ (1971) Differences in susceptibility of human cells to mouse sarcoma virus. J Natl Cancer Inst 47: 65

    PubMed  CAS  Google Scholar 

  119. Pfeffer LM, Kopeolvich L (1977) Differential genetic susceptibility of cultured human skin fibroblasts to transformation by Kirsten murine sarcoma virus. Cell 10: 313

    Article  PubMed  CAS  Google Scholar 

  120. Levy JA (1975) Host ränge of murine xenotropic virus: replication in avian cells. Nature 253: 140

    Article  PubMed  CAS  Google Scholar 

  121. Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA (1983) Acquisition of transforming properties by alternative point mutations within c-bas/has human proto-oncogene. Nature 303: 775

    Article  PubMed  CAS  Google Scholar 

  122. Fujita J, Yoshida O, Yuasa Y, Rhim JS, Hatanaka M, Aaronson SA (1984) Ha-ray oncogenes are activated by somatic alterations in human urinary tract tumors. Nature 309: 464

    Article  PubMed  CAS  Google Scholar 

  123. Baimain A, Ramsden M, Bowden GT, Smith J (1984) Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas. Nature 307: 658

    Article  Google Scholar 

  124. Sukumar S, Notario V, Martin-Zanca D, Barbacid M (1983) Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by Single point mutations. Nature 306: 658

    Article  PubMed  CAS  Google Scholar 

  125. Holliday R (1983) Cancer and cell senescence. Nature 306: 742

    Article  PubMed  CAS  Google Scholar 

  126. Fogh J (ed) (1975) Human tumor cells in vitro. Plenum, New York

    Google Scholar 

  127. Salmon SE (1980) Cloning of human tumor stem cells. Alan R Liss, NY

    Google Scholar 

  128. Wigler M, Fasano O, Taparowsky E, Powers S, Kataoka T, Brinbaum D, Shimizu KF, Goldfarb M (1984) Structure and activation of ras genes. In: Vande Woude GF, Levine AJ, Topp WC, Watson JD (eds) Cancer cells 2/oncogenes and viral genes. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  129. Capon DJ, Seeburg PH, McGrath JP, Hayflick JS, Edman U, Levinson AD, Goeddel DV (1983) Activation of Ki-ras 2 gene in human colon and lung carcinomas by two different point mutations. Nature 304: 507

    Article  PubMed  CAS  Google Scholar 

  130. Pulciani S, Santos E, Lauver AV, Long LK, Aaronson SA, Barbacid M (1982) Oncogenes in solid human tumors. Nature 300: 539

    Article  PubMed  CAS  Google Scholar 

  131. Albino AP, Le Strange R, Oliff AI, Furth ME, Old LJ (1984) Transforming ras genes from human melanoma: a manifestation of tumor heterogeneity? Nature 308: 69

    Article  PubMed  CAS  Google Scholar 

  132. Vousden KM, Marshall CJ (1984) Three different activated ras genes in mouse tumours; evidence for oncogene activation during progression of a mouse lymphoma. EMBO J 3: 913

    PubMed  CAS  Google Scholar 

  133. Tainsky MA, Cooper CS, Giovanella BC, Vande Woude GF (1984) An activated rasN gene: detected in late but not early passage human Pal teratocarcinoma cells. Science 225: 643

    Article  PubMed  CAS  Google Scholar 

  134. Maisei J, Klement V, Lai MMC, Ostertag W, Duesberg PH (1973) Ribonucleic acid components of murine sarcoma and leukemia viruses. Proc Natl Acad Sei USA 70: 3536

    Article  Google Scholar 

  135. Ellis RW, Defeo D, Furth ME, Scolnick EM (1982) Mouse cells contain two distinet ras gene mRNA species that can be translated into a p21 one protein. Mol Cell Biol 2:1339 134. Parada LF, Tabin C, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma ras gene. Nature 297: 474

    Article  Google Scholar 

  136. Scolnick EM, Vass WC, Howk, Duesberg PH (1979) Defective retrovirus-like 30S RNA species of rat and mouse cells are infectious if packaged by Type C helper virus. J Virol 9: 964

    Google Scholar 

  137. Temin HM (1983) We still don’t understand cancer. Nature 302: 656

    Article  PubMed  CAS  Google Scholar 

  138. Spandidos DA, Wilkie NM (1984) Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature 310: 469

    Article  PubMed  CAS  Google Scholar 

  139. Stewart TA, Pattengale PK, Leder P (1984), Spontaneous mammary adenocarcinoma in transgenic mice that carry and express MTW/myc fusion genes. Cell 38: 627–637

    Article  PubMed  CAS  Google Scholar 

  140. Bizub D, Katz RA, Skalka AM (1984) Nucleotide sequence of noncoding regions in Rous-associated Virus-2: comparisons delineate conserved regions important in republication and oncogenesis. J Virol 49: 557–565

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Duesberg, P.H., Nunn, M., Kan, N., Watson, D., Seeburg, P.H., Papas, T. (1985). Are Activated Proto-onc Genes Cancer Genes?. In: Neth, R., Gallo, R.C., Greaves, M.F., Janka, G. (eds) Modern Trends in Human Leukemia VI New Results in Clinical and Biological Research Including Pediatric Oncology. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70385-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70385-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15329-0

  • Online ISBN: 978-3-642-70385-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics