Advertisement

Effect of Hydrostatic Pressure and Hematocrit on Blood Flow and Filtration Rate

  • P. Kramer
  • F. Rösick
  • G. Biege
  • G. Hellige
  • F. Scheler

Abstract

Arterial pressure and hematocrit are the practically important determinants of blood flow through capillaries [2, 3, 6, 7]. The following figures (except Fig. 5) demonstrate results of studies on the blood flow and filtration rate studied under in vivo conditions (37 °C) [9]; oxygen and glucose substituted blood [10]; pulsatile blood flow with Harvard-pump driven membrane heart [8] in relation to blood pressure, negative filtration pressure, hematocrit, use of three-way valves in the extracorporeal tubing system and in relation to postdilution [5]. The Amicon continuous arteriovenous hemofiltration (CAVH) set (1983) including diafilter-20 (0.2 m2) and the eight Charr-Vygon vascular catheters were used for the artificial circulation. Systolic, diastolic, and venous back flow pressure as well as the flow and pressure profiles were comparable to in vivo conditions.

Keywords

Filtration Rate Hydrostatic Pressure Blood Viscosity Blood Flow Rate Filtration Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chien S, Usami S, Dellenback RJ, Gregersen BM (1970) Shear-dependent deformation of erythrocytes in rheology of human blood. Am J Physiol 219: 136–142PubMedGoogle Scholar
  2. 2.
    Hershko C, Carmeli D (1970) The effect of packed cell volume, hemoglobin content and red cell count on whole blood viscosity. Acta Haematol 44: 142–154PubMedCrossRefGoogle Scholar
  3. 3.
    Hochmuth RM, Davis DO (1969) Changes in hematocrit for blood flow in narrow tubes. Bibl Anat 11: 59–65Google Scholar
  4. 4.
    Kaplan AA, Longnecker RE, Folkert VW (1983) Suction-assisted continuous arteriovenous hemofiltration. Trans Am Soc Artif Intern Organs 29: 408–412PubMedGoogle Scholar
  5. 5.
    Kramer P, Rosick F, Rosekranz W, Hellige G, Scheler F (1984) Determinanten der Filtrationsfraktion bei arterio-venoser Hamofiltration. Verh Dtsch Ges Inn Med 90: 983–986Google Scholar
  6. 6.
    Litwin MS, Chapman K (1970) Physical factors affecting human blood viscosity. J Surg Res 10:433–436Google Scholar
  7. 7.
    Okazaki M, Yoshida F (1976) Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng 4: 138–150PubMedCrossRefGoogle Scholar
  8. 8.
    Olthoff G, Bleiber R, Menninger H, Olthoff D (1977) Veranderungen der Erythrocytenform durch Anwendung des extrakorporalen Kreislaufs. Z Exp Chir 10: 226–232PubMedGoogle Scholar
  9. 9.
    Snyder GK (1971) Influence of temperature and hematocrit on blood viscosity. Am J Physiol 220: 1667–1672PubMedGoogle Scholar
  10. 10.
    Tannert C, Schmidt G, Steinhof A, Staack R (1979) Untersuchungen zur Verformbarkeit roter Blutzellen bei Lagerung mit einem einfachen Filtrationsverfahren. Acta Biol Med Ger 38: 1595–1600PubMedGoogle Scholar
  11. 11.
    Teitel P, Szasz I (1971) A haemorheological view on molecular interactions between red blood cell constituents. Haematologica 5: 37–44Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • P. Kramer
  • F. Rösick
  • G. Biege
  • G. Hellige
  • F. Scheler

There are no affiliations available

Personalised recommendations