Skip to main content

Kinetics of Lactic Acid Accumulation and Removal in the Fetus

  • Conference paper
Fetal Heart Rate Monitoring
  • 141 Accesses

Abstract

Fetal hypoxia is one of the causes of fetal heart rate alterations, certainly the most important one clinically. Fetal hypoxia, on the other hand, is reflected by accumulation of lactic acid in the fetal body. The rise in fetal lactate concentration provides information on the hypoxic component of fetal heart rate alterations. Thus we can consider the use of the plasma lactate concentration in the fetus as a quantitative indicator of fetal hypoxia. This paper will describe the quantitative relationship between fetal lactate concentration and hypoxia. What is the hypoxic threshold for the increase in lactate concentration? How is the rise in lactate concentration related to the degree of fetal hypoxia? What is the rate of net lactate production and the maximum anaerobic metabolic rate in lactate production? Which processes remove fetal lactate in posthypoxic periods? How fast is the removal, i.e., how long does the “lactate signal” of hypoxic periods last?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carstensen MH, Leichtweiss HP, Schröder H (1983) Lactate carriers in the artificially perfused human term placenta. Placenta 4:165–174

    Article  PubMed  CAS  Google Scholar 

  • Dawes GS, Mott JC, Shelley HJ (1959) The importance of cardiac glycogen for the maintenance of life in foetal lambs and new-born animals during anoxia. J Physiol (Lond) 146:516–538

    CAS  Google Scholar 

  • Derom R (1964) Anaerobic metabolism in the human fetus. Am J Obstet Gynecol 89:241–251

    PubMed  CAS  Google Scholar 

  • Girard H, Klappstein S, Bartag I, Moll W (1983) Blood circulation and oxygen transport in the fetal guinea pig. J Dev Physiol 5:181–193

    PubMed  CAS  Google Scholar 

  • Haberey P, Piquard F, Hsiung R, Schaefer A, Lazarus S, Dellenbach P (1981a) Mécanisme du transfert foeto-maternel et métabolisme placentaire du lactate dans l’espèce humaine. Rev Fr Gynecol Obstet 76:813–828

    CAS  Google Scholar 

  • Haberey P, Piquard F, Hsiung R, Schaefer A, Dellenbach P (1981b) Etude critique de l’acidose transmise. Rev Fr Gynecol Obstet 76:877–888

    Google Scholar 

  • Herberger J, Moll W (1976) The flow resistance of the maternal placental vascular bed of anesthetized guinea pigs. Z Geburtshilfe Perinatol 180:61–66

    PubMed  CAS  Google Scholar 

  • Kastendieck E, Moll W (1977) The placental transfer of lactate and bicarbonate in the guinea-pig. Pflügers Arch 370:165–171

    Article  PubMed  CAS  Google Scholar 

  • Kastendieck E, Künzel W, Kurz CS (1979) Placental clearance of lactate and bicarbonate in sheep. Gynecol Obstet Invest 10:9–22

    Article  PubMed  CAS  Google Scholar 

  • Kastendieck E, Künzel W, Kurz CS (1980) Utilization of lactic acid and cardiovascular response in the sheep fetus receiving an infusion of lactic acid. Arch Gynecol 230:21–32

    Article  PubMed  CAS  Google Scholar 

  • Leichtweiss HP, Schröder H (1981) L-lactate and D-lactate carriers on the fetal and the maternal side of the trophoblast in the isolated guinea-pig placenta. Pflügers Arch 390:80–85

    Article  PubMed  CAS  Google Scholar 

  • Moll W, Kastendieck E (1978) Accumulation and disappearance of lactate in a fetus with a hemochorial placenta. The role of placental transfer and fetal metabolism. J Perinat Med 6:246–254

    Article  PubMed  CAS  Google Scholar 

  • Moll W, Girard H, Gros G (1980) Facilitated diffusion of lactic acid across the guinea-pig placenta. Pflügers Arch 385:229–238

    Article  PubMed  CAS  Google Scholar 

  • Myers RE (1977) Experimental models of perinatal brain damage: relevance to human pathology. In: Gluck L (ed) Intrauterine asphyxia and the developing fetal brain. Year Book Medical, New York, pp 37–97

    Google Scholar 

  • Myers RE, Mueller-Heubach E, Adamsons K (1973) Predictability of the state of fetal oxygenation from a quantitative analysis of the components of late deceleration. Am J Obstet Gynecol 115:1083–1094

    PubMed  CAS  Google Scholar 

  • Paterson PJ (1971) The effect of asphyxia on the mid gestation human fetus. Biol Neonate 17:285–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moll, W., Kastendieck, E. (1985). Kinetics of Lactic Acid Accumulation and Removal in the Fetus. In: Künzel, W. (eds) Fetal Heart Rate Monitoring. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70358-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70358-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70360-7

  • Online ISBN: 978-3-642-70358-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics