Advertisement

Slit Sensilla and the Measurement of Cuticular Strains

  • Friedrich G. Barth
Chapter

Abstract

Information about the strains occurring in a piece of material under load is important in many design problems, where economy of material investment and optimization of mechanical properties are essential. Accordingly, strain- measuring techniques are applied in a wide range of industries, including such different fields as aircraft and bridge construction and design of pianos and skis.

Keywords

Ground Reaction Force Campaniform Sensilla Single Slit Covering Membrane Lyriform Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babu KS, Barth FG (1984) Neuroanatomy of the central nervous system of the wandering spider, Cupiennius salei (Arachnida, Araneida). Zoomorphology 104:344–359CrossRefGoogle Scholar
  2. Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:409–449CrossRefGoogle Scholar
  3. Barth FG (1969) Die Feinstruktur des Spinneninteguments. I. Die Cuticula des Laufbeines adulter häutungsferner Tiere (Cupiennius salei Keys.). Z Zellforsch 97:139–159Google Scholar
  4. Barth FG (1970) Die Feinstruktur des Spinneninteguments. II. Die räumliche Anordnung der Mikrofasern in der lamellierten Cuticula und ihre Beziehung zur Gestalt der Porenkanäle (Cupiennius salei Keys., adult, häutungsfern, Tarsus). Z Zellforsch 104:89–106Google Scholar
  5. Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys. Araneae). Z Zellforsch 112:212–246CrossRefPubMedGoogle Scholar
  6. Barth FG (1972a) Die Physiologie der Spaltsinnesorgane. I. Modellversuche zur Rolle des cuticularen Spaltes beim Reiztransport. J Comp Physiol 78:315–336CrossRefGoogle Scholar
  7. Barth FG (1972b) Die Physiologie der Spaltsinnesorgane. II. Funktionelle Morphologie eines Mechanorezeptors. J Comp Physiol 81:159–186CrossRefGoogle Scholar
  8. Barth FG (1973) Laminated composite material in biology. Microfiber reinforcement of an arthropod cuticle. Z Zellforsch 144:409–433CrossRefPubMedGoogle Scholar
  9. Barth FG (1976) Sensory information from strains in the exoskeleton. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam Oxford New York, pp 445–473Google Scholar
  10. Barth FG (1978) Slit sense organs: “Strain gauges” in the arachnid exoskeleton. Symp Zool Soc Lond 1977 42:439–448Google Scholar
  11. Barth FG (1980) Campaniform sensilla: another vibration receptor in the crab leg. Naturwissenschaften 67:201CrossRefGoogle Scholar
  12. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MS, Cosens D (eds) Sense organs, chap 8. Blacky, Glasgow, pp 112–141Google Scholar
  13. Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York Tokyo, pp 544–582Google Scholar
  14. Barth FG, Bohnenberger J (1978) Lyriform slit sense organ: Threshold and stimulus amplitude ranges in a multi-unit mechanoreceptor. J Comp Physiol 125:37–43CrossRefGoogle Scholar
  15. Barth FG, Geethabali (1982) Spider vibration receptors. Threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–186CrossRefGoogle Scholar
  16. Barth FG, Libera W (1970) Ein Atlas der Spaltsinnesorgane von Cupiennius salei Keys. Chelicerata (Araneae). Z Morphol Tiere 68:343–369CrossRefGoogle Scholar
  17. Barth FG, Pickelmann H-P (1975) Lyriform slit sense organs. Modelling an arthropod mechanoreceptor. J Comp Physiol 103:39–54CrossRefGoogle Scholar
  18. Barth FG, Seyfarth E-A (1971) Slit sense organs and kinesthetic orientation. Z Vergl Physiol 74:326–328CrossRefGoogle Scholar
  19. Barth FG, Stagl J (1976) The slit sense organs of arachnids. A comparative study of their topography on the walking legs. Zoomorphology 86:1–23CrossRefGoogle Scholar
  20. Barth FG, Wadepuhl M (1975) Slit sense organs on the scorpion leg (Androctonus australis, L. Buthidae). J Morphol 145: (2)209–227CrossRefGoogle Scholar
  21. Barth FG, Ficker E, Federle H-U (1984) Model studies of the mechanical significance of grouping in compound spider slit sensilla. Zoomorphology 104:204–215CrossRefGoogle Scholar
  22. Bertkau PH (1878) Versuch einer natürlichen Anordnung der Spinnen nebst Bemerkungen an einzelnen Gattungen. Arch Naturgesch 44:351–410Google Scholar
  23. Biederman-Thorson M, Thorson J (1971) Dynamics of excitation and inhibition in the light adapted Limulus eye in situ. J Gen Physiol 58:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  24. Bleckmann H, Barth FG (1984) Sensory ecology of a semi-aquatic spider (Dolomedes triton) II. The release of predatory behavior by water surface waves. Behav Ecol Soc 14:303–312CrossRefGoogle Scholar
  25. Blickhan R (1983) Dehnungen im Außenskelett von Spinnen. Dissertation, Univ FrankfurtGoogle Scholar
  26. Blickhan R, Barth FG (1979) Dehnungen und Spannungen im Außenskelett von Arthropoden. GESA-Symp, Exp Spannungsanal, Braunschweig, 21 pGoogle Scholar
  27. Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol (in press)Google Scholar
  28. Blickhan R, Barth FG, Ficker E (1982) Biomechanics in a sensory system. Strain detection in the exoskeleton of arthropods. VIIth Int Conf Exp Stress Anal, Haifa, pp 223–233Google Scholar
  29. Blickhan R, Weber W, Barth FG (1984) Strain at the site of biological strain detectors in the exoskeleton of spiders. Int Conf Exp Stress Anal, Montreal (in press)Google Scholar
  30. Bohnenberger J (1978) On the transfer characteristics of a lyriform slit sense organ. Symp Zool Soc Lond 42:449–455Google Scholar
  31. Bohnenberger J (1979) Das Übertragungsverhalten eines zusammengesetzten Spaltsinnesorgans auf dem Spinnenbein. Dissertation, Univ FrankfurtGoogle Scholar
  32. Bohnenberger J (1981) Matched transfer characteristics of single units in a compound slit sense organ. J Comp Physiol 142:391–402CrossRefGoogle Scholar
  33. Chapman DM, Mosinger JL, Duckrow RB (1979) The role of distributed viscoelastic coupling in sensory adaptation in an insect mechanoreceptor. J Comp Physiol 131:1–12CrossRefGoogle Scholar
  34. Frank U (1957) Untersuchungen zur funktionellen Anatomie der lokomotorischen Extremitäten von Zygiella x-notata, einer Radnetzspinne. Zool Jahrb Abt Anat Ontog Tiere 76:423–460Google Scholar
  35. Jonscher AK (1977) The universal dielectric response. Nature (London) 267:673–679CrossRefGoogle Scholar
  36. Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Hall LM, Hildebrand JG, Satelle DB (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam Oxford New York, pp 261–282Google Scholar
  37. Kaston BJ (1935) The slit sense organs of spiders. J Morphol 58:189–209CrossRefGoogle Scholar
  38. Küppers J (1974) Measurements on the ionic milieu of the receptor terminal in mechanoreceptive sensilla of insects. Rheinisch-Westfael Akad Wiss 53:387–394Google Scholar
  39. Lachmuth U, Grasshoff M, Barth FG (1985) Taxonomische Revision der Gattung Cupiennius SIMON 1891 (Arachnida: Araneae). Senckenbergiana biol 65:329–372Google Scholar
  40. Mann JW, Chapman KM (1975) Component mechanism of sensitivity and adaptation in an insect mechanoreceptor. Brain Res 97:331–336CrossRefPubMedGoogle Scholar
  41. McIndoo NE (1911) The lyriform organs and tactile hairs of araneids. Proc Acad Nat Sci Philadelphia 63:375–418Google Scholar
  42. Millot J, Vachon M (1949) Ordre des scorpions. In: Grassé T (ed) Traité de zoologie, vol VI. Masson, Paris, pp 386–436Google Scholar
  43. Parry DA (1957) Spider leg-muscles and the autotomy mechanism. Q J Microsc Sci 98: (3) 331–340Google Scholar
  44. Pringle JWS (1955) The function of the lyriform organs of arachnids. J Exp Biol 32:270–278Google Scholar
  45. Rick R, Barth FG, Pawel A (1976) X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum. J Comp Physiol 110:89–95Google Scholar
  46. Seyfarth E-A (1978a) Lyriform slit sense organs and muscle reflexes in the spider leg. J Comp Physiol 125:45–57CrossRefGoogle Scholar
  47. Seyfarth E-A (1978b) Mechanoreceptors and proprioreceptive reflexes: lyriform organs in the spider leg. Symp Zool Soc Lond 42:457–467Google Scholar
  48. Seyfarth E-A, Barth FG (1972) Compound slit sense organs on the spider leg: mechanoreceptors involved in kinesthetic orientation. J Comp Physiol 78:176–191CrossRefGoogle Scholar
  49. Seyfarth E-A, Bohnenberger J, Thorson J (1982) Electrical and mechanical stimulation of a spider slit sensillum: outward current excites. J Comp Physiol 147:423–432CrossRefGoogle Scholar
  50. Seyfarth E-A, Pflüger H-J (1984) Proprioceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiol 15:365–374CrossRefPubMedGoogle Scholar
  51. Seyfarth E-A, Eckweiler W, Hammer K (1985) A survey of sense organs and sensory nerves in the legs of spiders. Zoomorphology (in press)Google Scholar
  52. Snodgrass RE (1965) A textbook of arthropod anatomy. Hafner, New York LondonGoogle Scholar
  53. Speck J, Barth FG (1982) Vibration sensitivity of pretarsal slit sensilla in the spider leg. J Comp Physiol 148:187–194CrossRefGoogle Scholar
  54. Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172CrossRefPubMedGoogle Scholar
  55. Thurm U (1974) Basics of the generation of receptor potentials in epidermal mechanoreceptors in insects. In Schwarzkopff J (ed) Mechanoreception. Rheinisch-Westfael Acad Wiss 53:355–385Google Scholar
  56. Thurm U (1982a) Grundzüge der Transduktionsmechanismen in Sinneszellen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York, pp 681–691Google Scholar
  57. Thurm U (1982b) Mechano-elektrische Transduktion. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin Heidelberg New York, pp 691–696Google Scholar
  58. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla. In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, London New York, pp 735–763Google Scholar
  59. Thurm U, Wessel G (1979) Metabolism-dependent transepithelial potential differences at epidermal receptors of arthropods. J Comp Physiol 134:119–130CrossRefGoogle Scholar
  60. Vogel H (1923) Über die Spaltsinnesorgane der Radnetzspinnen. Jena Z Med Naturwiss 59:171–208Google Scholar
  61. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1976) Mechanical design in organisms. Unwin, LondonGoogle Scholar
  62. Yamada H (1970) In: Evans FG (ed) Strength of biological materials. Williams & Wilkins, BaltimoreGoogle Scholar
  63. Zill SN, Moran DT (1981a) The exoskeleton and insect proprioception. I. Responses of tibial campaniform sensilla to external and muscle-generated forces in the american cockroach, Periplaneta americana. J Exp Biol 91:1–24Google Scholar
  64. Zill SN, Moran DT (1981b) The exoskeleton and insect proprioception. III. Activity of tibial campaniform sensilla during walking in the american cockroach, Periplaneta americana. J Exp Biol 94:57–75Google Scholar
  65. Zill SN, Moran DT, Varela FG (1981) The exoskeleton and insect proprioception. II. Reflex effects of tibial campaniform sensilla in the american cockroach, Periplaneta americana. J Exp Biol 63:1–13Google Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • Friedrich G. Barth
    • 1
  1. 1.Zoologisches InstitutJ. W. Goethe-Universität, Gruppe SinnesphysiologieFrankfurt am Main 1Federal Republic of Germany

Personalised recommendations