Advertisement

Trichobothria

  • Andreas Reissland
  • Peter Görner
Chapter

Abstract

Trichobothria are hair sensilla on the integument of various terrestrial arthropods. They are characterized by a cup-shaped cuticular structure (Latin bothrium, cup) out of which a hair (Greek ϑϱίξ, τριχόç, hair) protrudes into the air. This hair is either long and thin (therefore in insects the sensillum is usually referred to as thread-hair) or it has the shape of a racket or a club. In spiders trichobothria have been known for a century. In 1883 Dahl observed that they were deflected by the sound of a violin and therefore called them Hörhaare (hairs of hearing). The racket-shaped trichobothria were described by Simon in 1892. The respective literature on spider trichobothria has been reviewed by Chrysanthus (1953), Schuh (1975), Krafft and Leborgne (1979) and Barth (1982).

Keywords

Sound Field Airborne Sound Stimulus Angle Substrate Vibration Tubular Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner H (1977) Insect sensillum specificity and structure: an approach to a new typology. In: Le Magnen J, Mac Leod P (eds) Olfaction and Taste, vol VI, Paris 1977. Information Retrieval, London Washington DC, pp 295–303Google Scholar
  2. Barth FG (1967) Ein einzelnes Spaltsinnesorgan auf dem Spinnentarsus: seine Erregung in Abhängigkeit von den Parametern des Luftschallreizes. Z Vergl Physiol 55:407–449CrossRefGoogle Scholar
  3. Barth FG (1969) Die Feinstruktur des Spinneninteguments I. Die Cuticula des Laufbeines adulter häutungsferner Tiere (Cupiennius salei Keys). Z Zellforsch 97:137–159PubMedCrossRefGoogle Scholar
  4. Barth FG (1971) Der sensorische Apparat der Spaltsinnesorgane (Cupiennius salei Keys, Araneae). Z Zellforsch 112:212–246PubMedCrossRefGoogle Scholar
  5. Barth FG (1978) Slit sense organs: “Strain Gauges” in the arachnid exoskeleton. Symp Zool Soc Lond 42:439–448Google Scholar
  6. Barth FG (1981) Strain detection in the arthropod exoskeleton. In: Laverack MM, Cosens DJ (eds) Sense organs. Blackie, Glasgow, pp 112–141Google Scholar
  7. Barth FG (1982) Spiders and vibratory signals: Sensory reception and behavioral significance. In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton, pp 67–122Google Scholar
  8. Barth FG, Blickhan R (1984) Mechanoreception. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol I. Invertebrates, Springer, Berlin Heidelberg New York Tokyo, pp 554–582CrossRefGoogle Scholar
  9. Bauer T (1982) Prey-capture in a ground-beetle larva. Anim Behav 30:203–308CrossRefGoogle Scholar
  10. Bischof H-J (1974) Verteilung und Bewegungsweise der keulenförmigen Sensillen von Gryllus bimaculatus Deg. Biol Zentralbl 93:449–457Google Scholar
  11. Bischof H-J (1975) Die keulenförmigen Sensillen auf den Cerci der Grille Gryllus bimaculatus als Schwererezeptoren. J Comp Physiol 98:277–288CrossRefGoogle Scholar
  12. Bonaric JC (1975) Utilisation des barèmes trichobothriotaxiques comme critère d’age chez Pisaura mirabilis Cl. (Araneae, Pisauridae). Ann Sci Nat Zool 12 Ser 17:521–534Google Scholar
  13. Buchli H (1969) Hunting behavior in the Ctenizidae. Am Zool 9:175–193CrossRefGoogle Scholar
  14. Buño W Jr, Monti-Bloch L, Mateos A, Handler P (1981) Dynamic properties of cockroach cercal “threadlike” hair sensilla. J Neurobiol 12:123–141PubMedCrossRefGoogle Scholar
  15. Camhi JM (1969) Locust wind receptors. I. Transducer mechanism and sensory response. J Exp Biol 50:335–348PubMedGoogle Scholar
  16. Camhi JM (1980) The escape system of the cockroach. Sci Am 6, 243:144–156Google Scholar
  17. Camhi JM, Tom W (1978a) The escape behavior of the cockroach Periplanet a americana L. I. Turning response to wind puffs. J Comp Physiol 128:193–201CrossRefGoogle Scholar
  18. Camhi JM, Tom W (1978b) The escape behavior of the cockroach Periplaneta americana L. II. Detection of natural predators by air displacement. J Comp Physiol 128:203–212CrossRefGoogle Scholar
  19. Christian U (1971) Zur Feinstruktur der Trichobothrien der Winkelspinne Tegenaria derhami (Scopoli), (Agelenidae, Araneae). Cytobiology 4:172–185Google Scholar
  20. Christian UH (1972) Trichobothrien, ein Mechanorezeptor bei Spinnen. Elektronenmikroskopische Befunde bei der Winkelspinne Tegenaria derhami (Scopoli) (Agelenidae, Araneae). Verh Dtsch Zool Ges 66:31–36Google Scholar
  21. Chrysanthus F (1953) Hearing and stridulation in spiders. Tijdschr Entomol 96:57–83Google Scholar
  22. Dahl F (1883) Über die Hörhaare bei den Arachniden. Zool Anz 6:267–270Google Scholar
  23. Dahl F (1911) Die Hörhaare (Trichobothrien) und das System der Spinnentiere. Zool Anz 37:522–532Google Scholar
  24. Den Otter CJ (1974) Setiform sensilla and prey detection in the bird-spider Sericopelma rubronitens Ausserer (Araneae, Theraphosidae). Neth J Zool 24:219–235CrossRefGoogle Scholar
  25. Dijkgraaf S (1947) Über die Reizung des Ferntastsinnes bei Fischen und Amphibien. Experientia 3:206–208PubMedCrossRefGoogle Scholar
  26. Draslar K (1973) Functional properties of trichobothria in the bug Pyrrhocoris apterus (L.). J Comp Physiol 84:175–184CrossRefGoogle Scholar
  27. Emerit M (1967) Innervation trichobothriale et axiale de la patte de l’Aranéide, Gasteracantha versicolor (Walck.) (Argiopidae). C R Acad Sci 265:1134–1137Google Scholar
  28. Emerit M (1969) Contribution a l’étude des Gasteracanthes (Aranéides, Argiopides) de Madagascar et des îles voisines. Thèse Fac Sci Montpellier, AO 2888Google Scholar
  29. Emerit M (1970) Nouveau apports a la théorie de l’arthrogenèse de l’appendice araehnidien. Bull Mus Hist Nat 2 Ser 41:1398–1402Google Scholar
  30. Emerit M (1972) Le développement des Gasteracacanthes (Aranéida, Argiopidae). Une contribution a l’étude de l’appendice aranéidien. Ann Mus Afr Cent Sci Zool 195:1–103Google Scholar
  31. Emerit M (1974) Observations sur la trichobothriotaxie des Néphiles (Araneae, Araneidae, Nephilinae). Bull Mus Hist Nat 3 Ser 260:1613–1628Google Scholar
  32. Emerit M (1976) Quelques reflexions sur la trichobothriotaxie des Aranéides. C R Col Arachnol Fr, Les Eyzies, 1976, Académie de Paris, Stn Biol Eyzies, Paris, pp 40–51Google Scholar
  33. Emerit M, Bonaric JC (1975) Contribution a l’étude du développement de l’appareil mécanorécepteur des araignées: la tricobothriotaxie de Pisaura mirabilis Cl (Araneae, Pisauridae). Zool Jahrb Anat 94:358–374Google Scholar
  34. Fletcher NH (1978) Acoustical response of hair receptors in insects. J Comp Physiol 127:185–189CrossRefGoogle Scholar
  35. Foelix RF (1975) Occurrence of synapses in peripheral sensory nerves of arachnides. Nature (London) 254:146–148CrossRefGoogle Scholar
  36. Foelix RF (1976) Rezeptoren und synaptische Verschaltungen bei verschiedenen Arachnida. Entomol Germ 3:83–87Google Scholar
  37. Foelix RF, Müller-Vorholt G, Jung H (1980) Organization of sensory leg nerve in the spider Zygiella x-notata (Clerck) (Araneae, Araneidae). Bull Br Arachnol Soc 5:20–28Google Scholar
  38. Frings H, Frings M (1966) Reactions of orb-weaving spiders (Argiopidae) to airborne sounds. Ecology 47:578–588CrossRefGoogle Scholar
  39. Gabbutt PD (1969) Pseudoscorpions: Growth and trichobothria. Bull Mus Nat Hist Nat Paris 2 Ser 41 (Suppl 1):134–140Google Scholar
  40. Gabbutt PD (1972) Differences in the disposition of trichobothria in the Chernetidae (Pseudoscorpiones). J Zool Lond 167:1–13CrossRefGoogle Scholar
  41. Gaffal KP, Hansen K (1972) Mechanorezeptive Strukturen der antennalen Haarsensillen der Baumwollwanze Dysdercus intermedius Dist. Z Zellforsch 132:79–94PubMedCrossRefGoogle Scholar
  42. Gnatzy W (1972) Die Feinstruktur der Fadenhaare auf den Cerci von Periplaneta americana L. Verh Dtsch Zool Ges 66:37–42Google Scholar
  43. Gnatzy W (1976) The ultrastructure of the thread-hairs on the cerci of the cockroach Periplaneta americana L: The intermoult phase. J Ultrastruct Res 54:124–134PubMedCrossRefGoogle Scholar
  44. Gnatzy W (1980) Morphogenesis of mechanoreceptor and epidermal cells of crickets during the last instar and its relation to molting-hormone level. Cell Tissue Res 213:369–391PubMedGoogle Scholar
  45. Gnatzy W, Schmidt K (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg (Saltatoria, Gryllidae). Z Zellforsch 122:190–209PubMedCrossRefGoogle Scholar
  46. Gnatzy W, Tautz J (1977) Sensitivity of an insect mechanoreceptor during moulting. Physiol Entomol 2:279–288CrossRefGoogle Scholar
  47. Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: Stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463PubMedGoogle Scholar
  48. Görner P (1965) A proposed transducing mechanism for a multiply-innervated mechanoreceptor (trichobothrium) in spiders. Cold Spring Harbor Symp Quant Biol 30:69–73PubMedCrossRefGoogle Scholar
  49. Görner P, Andrews P (1969) Trichobothrien, ein Ferntastsinnesorgan bei Webespinnen (Araneen). Z Vergl Physiol 64:301–317CrossRefGoogle Scholar
  50. Gossel P (1936) Beiträge zur Kenntnis der Hautsinnesorgane und Hautdrüsen der Cheliceraten und der Augen der Ixodiden. Z Morphol Oekol Tiere 30:177–205CrossRefGoogle Scholar
  51. Hansen HJ (1917) On the trichobothria (“auditory hairs”) in arachnida, myriapoda and insecta. Entomol Tidskr 38:240–259Google Scholar
  52. Harris DJ, Mill PJ (1977) Observations on the leg receptors of Ciniflo (Araneidae: Dictynidae). I. External Mechanoreceptors. J Comp Physiol 119:37–54CrossRefGoogle Scholar
  53. Haupt J, Coineau Y (1975) Trichobothrien and Tastborsten der Milbe Microcaeculus (Acari, Prostigmata, Caeculidae). Z Morphol Tiere 81:305–322CrossRefGoogle Scholar
  54. Hayes WF, Barber SB (1982) Peripheral synapses in Limulus chemoreceptors. Comp Biochem Physiol 72A:287–293CrossRefGoogle Scholar
  55. Helversen O von (1966) Über die Homologie der Tasthaare bei Pseudoskorpionen (Arach). Senckenbergiana Biol 47:185–195Google Scholar
  56. Hergenröder R, Barth FG (1983a) The release of attack and escape behavior by vibratory stimuli in a wandering spider (Cupiennius salei Keys). J Comp Physiol 152:347–359CrossRefGoogle Scholar
  57. Hergenröder R, Barth FG (1983b) Vibratory signals and spider behavior: How do the sensory inputs from the eight legs interact in orientation? J Comp Physiol 152:361–371CrossRefGoogle Scholar
  58. Hoffmann C (1965) Die Trichobothrien der Skorpione. Naturwissenschaften 52:436–437CrossRefGoogle Scholar
  59. Hoffmann C (1967) Bau und Funktion der Trichobothrien von Euscorpius carpathicus L. Z Vergl Physiol 54:290–352CrossRefGoogle Scholar
  60. Horn E, Bischof H-J (1983) Gravity reception in crickets: The influence of cercal and antennal afferences on the head position. J Comp Physiol 150:93–98CrossRefGoogle Scholar
  61. Ignatiev AM, Ivanov VP, Balashov YS (1976) The fine structure and function of the trichobothria in the scorpion Buthus eupeus Koch (Scorpiones, Buthidae). Entomol Rev 55:12–18Google Scholar
  62. Juberthie C, Piquemal F (1977) L’équipement sensoriel de Trechinae souterrains (Coléoptères). IL Ultrastructure des trichobothries de l’élytre. Int J Speleol 9:137–152CrossRefGoogle Scholar
  63. Klärner D, Barth FG (1982) Vibratory signals and prey capture in orb-weaving spiders (Zygiella x-notata, Nephila clavipes; Araneidae). J Comp Physiol 148:445–455CrossRefGoogle Scholar
  64. Krafft B, Leborgne R (1979) Perception sensorielle et importance des phenomènes vibratoires chez les araignées. J Psychol 3:299–334Google Scholar
  65. Lehtinen PT (1967) Classification of the cribellate spiders and some allied families, with notes on the evolution of the suborder Araneomorpha. Ann Zool Fenn 4:199–468Google Scholar
  66. Lehtinen PT (1975) Notes on the phylogenic classification of Araneae. In: Vlijm L et al. (eds) Proc IVth Int Arachnol Congr, Vrije Univ Amsterdam 1976, pp 26–29Google Scholar
  67. Linsenmair KE (1968) Anemotaktische Orientierung bei Skorpionen (Chelicerata, Scorpiones). Z Vergl Physiol 60:445–449CrossRefGoogle Scholar
  68. Mahnert V (1976) Etude comparative des trichobothries de pseudoscorpions au microscope électronique à balayage. CR Séanc Soc Phys Hist Nat 11:96–99Google Scholar
  69. Mann WD, Chapman DM (1975) Component mechanism of sensitivity and adaptation in an insect mechanoreceptor. Brain Res 97:331–336PubMedCrossRefGoogle Scholar
  70. Markl H, Tautz J (1975) The sensitivity of hair receptors in caterpillars of Barathra brassicae L (Lepidoptera, Noctuidae) to particle movement in a sound field. J Comp Physiol 99:79–87CrossRefGoogle Scholar
  71. McIver SB (1975) Structure of cuticular mechanoreceptors of arthropods. Annu Rev Entomol 20:381–397PubMedCrossRefGoogle Scholar
  72. Meßlinger K (1981) Vergleichende Untersuchungen zur Feinstruktur und Funktionsmorphologie der Trichobothrien von Skorpionen. Diplomarbeit, Univ WürzburgGoogle Scholar
  73. Millot J (1968) Classe des arachnides. I. Morphologie générale et anatomie interne. In: Grassé PP (ed) Traîté de zoologie, Tome VI. Masson, Paris, p 302Google Scholar
  74. Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New York, p 312Google Scholar
  75. Nicklaus R (1965) Die Erregung einzelner Fadenhaare von Periplaneta americana in Abhängigkeit von der Größe und Richtung der Auslenkung. Z Vergl. Physiol 50:331–362Google Scholar
  76. Nicklaus R (1967) Zur Richtcharakteristik der Fadenhaare von Periplaneta americana. Z Vergl Physiol 54:434–437CrossRefGoogle Scholar
  77. Nicklaus R (1969) Zur Funktion der keulenförmigen Sensillen auf den Cerci der Grillen. Verh Dtsch Zool Ges 62:393–398Google Scholar
  78. Palmgren P (1936) Experimentelle Untersuchungen über die Funktion der Trichobothrien bei Tegenaria derhami Scop. Acta Zool Fenn 19:3–27Google Scholar
  79. Parry DA (1960) The small leg-nerve of spiders and a probable mechanoreceptor. Q J Microsc Sci 101:1–8Google Scholar
  80. Pauly F (1956) Zur Biologie einiger Belbiden (Oribatei, Moosmilben) und zur Funktion ihrer pseudostigmatischen Organe. Zool Jahrb Syst 84:275–328Google Scholar
  81. Rathmayer W (1966) Die Innervation der Beinmuskeln einer Spinne Eurypelma hentzi Chamb. (Orthognatha, Aviculariidae). Verh Dtsch Zool Ges 59:505–511Google Scholar
  82. Reißland A (1978) Electrophysiology of trichobothria in orb-weaving spiders (Agelenidae, Aranea). J Comp Physiol 123:71–84CrossRefGoogle Scholar
  83. Reißland A (1979) Funktion des Trichobothrienrezeptors von Webespinnen. Verh Dtsch Zool Ges 72:297Google Scholar
  84. Reißland A, Görner P (1978) Mechanics of trichobothria in orb-weaving spiders (Agelenidae; Araneae). J Comp Physiol 123:59–69CrossRefGoogle Scholar
  85. Reißland A, Habigsberg A (1985) Ethology of the orientation to airborne sound in funnel-web spiders (Agelenidae) (in press)Google Scholar
  86. Riechert SE, Łuczak J (1982) Spicier foraging: Behavioral responses to prey. In: Witt PN, Rovner JS (eds) Spider communication. Princeton Univ Press, Princeton, pp 353–385Google Scholar
  87. Schmidt K, Gnatzy W (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg (Saltatoria, Gryllidae). II. Die Häutung der Faden- und Keulenhaare. Z Zellforsch 122:210–226PubMedCrossRefGoogle Scholar
  88. Schuh RT (1975) The structure, distribution and taxonomic importance of trichobothria in the Miridae (Hemiptera). Am Mus Nov 2585. Am Mus Nat Hist, New York, pp 1–26Google Scholar
  89. Simon E (1892) Histoire naturelle des araignées. Libr Encycl Roret, ParisCrossRefGoogle Scholar
  90. Skudrzyk E (1971) The foundations of acoustics, Springer, Wien New York, pp 270–366Google Scholar
  91. Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Reprinted in: Mathematical and physical papers, vol III, Cambridge Univ Press, Cambridge 1922, pp 1–140Google Scholar
  92. Tarman K (1961) Über Trichobothrien und Augen bei Oribatei. Zool Anz 167:51–58Google Scholar
  93. Tautz J (1977) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L (Lepidoptera, Noctuidae). I. Mechanical properties of the receptor hairs. J Comp Physiol 118:13–31CrossRefGoogle Scholar
  94. Tautz J (1978) Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L (Lepidoptera, Noctuidae). II. Response characteristics of the sensory cell. J Comp Physiol 125:67–77CrossRefGoogle Scholar
  95. Tautz J (1979) Reception of particle oscillation in a medium - an unorthodox sensory capacity. Naturwissenschaften 66:452–461CrossRefGoogle Scholar
  96. Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to medium vibration. Behav Ecol Sociobiol 4:101–110CrossRefGoogle Scholar
  97. Thorson J, Biederman-Thorson M (1974) Distributed relaxation processes in sensory adaptation. Science 183:161–172PubMedCrossRefGoogle Scholar
  98. Thurm U (1964) Mechanoreceptors in the cuticle of the honeybee. Fine structure and stimulus mechanism. Science 145:161–172CrossRefGoogle Scholar
  99. Thurm U (1982) Biophysik der Mechanorezeption. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, 2nd edn. Springer, Berlin Heidelberg, pp 691–696Google Scholar
  100. Tischner H, Schief A (1955) Fluggeräusch und Schallwahrnehmung bei Aedes aegypti L. Zool Anz Suppl 18:453–460Google Scholar
  101. Tobias M, Murphey RK (1979) The response of cercal receptors and identified interneurons in the cricket (Acheta domesticus) to airstreams. J Comp Physiol 129:51–59CrossRefGoogle Scholar
  102. Vachon M (1958) Contribution a l’étude du développement postembryonnaire des araignées. 2e note. Orthognates. Bull Soc Zool Fr 83:429–461Google Scholar
  103. Vachon M (1965) Contribution a l’étude du développement postembryonnaire des araignées. 3e note. Pholcus phalangioides (Fussl). Bull Soc Zool Fr 90:607–620Google Scholar
  104. Vachon M (1973) Etude des caractères utilisées pour classer les families et les genres de Scorpions (Arachnides). 1. La trichobothriotaxie en arachnologie. Sigles trichobothriaux et types de trichobothriotaxie chez les Scorpions. Bull Mus Hist Nat 3 Ser 140:857–958Google Scholar
  105. Westin K (1979) Responses to wind recorded from cercal nerve of the cockroach Periplaneta americana. I. Response properties of single sensory neurons. J Comp Physiol 133:97–102CrossRefGoogle Scholar
  106. Weygoldt PW (1966) Moos- und Bücherskorpione. Neue Brehm-Bücherei 365. Ziemen, Wittenberg LutherstadtGoogle Scholar
  107. Weygoldt PW, Paulus HF (1979) Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. I. Morphologische Untersuchungen. Z Zool Syst Evolutionsforsch 17:85–116CrossRefGoogle Scholar
  108. Yamashita S, Tateda H (1981) Efferent neural control in the eyes of orb-weaving spiders. J Comp Physiol 143:477–483CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • Andreas Reissland
    • 1
  • Peter Görner
    • 1
  1. 1.Fakultät für BiologieUniversität BielefeldBielefeld 1Federal Republic of Germany

Personalised recommendations