Advertisement

Mechano- and Chemoreceptive Sensilla

  • R. F. Foelix

Abstract

Arachnids do not have antennae, but bear most of their sensory organs on their extremities. In particular the palps and first two pairs of legs carry a variety of mechano- and chemoreceptors. The basic receptor form is represented by the sensory hair or hair sensillum. According to the mode of innervation we can distinguish two broad categories: (1) hair sensilla with dendrites ending at the hair base (mechanoreceptors), and (2) hair sensilla with dendrites that enter the hair shaft and communicate with the outside through pores in the hair wall (chemoreceptors). Other sensilla, e.g., for thermo- and hygroreception, certainly occur in arachnids but have not yet been studied systematically.

Keywords

Hair Shaft Contact Chemoreceptor Tubular Body Hair Base Hair Sensilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altner H, Prillinger L (1980) Ultrastructure of invertebrate chemo-, thermo-, and hygroreceptors and its functional significance. Int Rev Cytol 67:69–151CrossRefGoogle Scholar
  2. Bauchhenss E (1983) Morphology and ultrastructure of sensilla ampullacea in Solifugae (Chelicerata: Arachnida). Int J Insect Morphol Embryol 12:129–138CrossRefGoogle Scholar
  3. Beck L, Foelix R, Gödecke E, Kaiser R (1977) Morphologie, Larvalentwicklung und Haarsensillen des Tastbeinpaares der Geißelspinne Heterophrynus longicornus Butler (Arach., Amblypygi). Zoomorphologie 88:259–276CrossRefGoogle Scholar
  4. Blanke R (1973) Nachweis von Pheromonen bei Netzspinnen. Naturwissenschaften 10:481CrossRefGoogle Scholar
  5. Blumenthal H (1935) Untersuchungen über das ‘Tarsalorgan’ bei Netzspinnen. Z Morphol Oekol Tiere 29:667 -719CrossRefGoogle Scholar
  6. Bristowe WS (1941) The comity of spiders, vol II. Ray Soc No 128, LondonGoogle Scholar
  7. Brownell PH, Farley RD (1974) The organization of the malleolar sensory system in the solpugid, Chanbria sp. Tissue Cell 6:471–485CrossRefPubMedGoogle Scholar
  8. Brownell PH, Farley RD (1979) Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion Paruroctonus mesaensis. J Comp Physiol 131:23 - 30CrossRefGoogle Scholar
  9. Chu-Wang IW, Axtell RC (1973) Comparative fine structure of the claw sensilla of a soft tick, Argas (Persicargas) arboreus Kaiser, Hoogstraal, and Kohls, and a hard tick, Amblyomma americanum (L.). J Parasitol 59:545- 555CrossRefGoogle Scholar
  10. Dethier VG (1963) The physiology of insect senses. Methuen, LondonCrossRefGoogle Scholar
  11. Dethier VG (1971) A surfeit of stimuli: a paucity ofreceptors. Am Sci 59:706–715Google Scholar
  12. Drewes CD, Bernard RA (l976) Electrophysiologicai responses of chemosensitive sensilla in the wolf spider. J Exp Zool 198:423 - 428CrossRefPubMedGoogle Scholar
  13. Dumpert K (1978) Spider odor receptor: Electrophysiological proof. Experientia 34:754–755CrossRefGoogle Scholar
  14. Eckweiler W (1983) Topographie von Proprioreceptoren, Muskeln und Nerven im PatellaTibia- und Metatarsus-Tarsus-Ge1enk des Spinnenbeins. Diplomarbeit, Univ FrankfurtGoogle Scholar
  15. Egan ME (1976) The chemosensory bases of host discrimination in a parasitic mite. J Comp Physiol 109:69 - 89CrossRefGoogle Scholar
  16. Ernst KD (1972) Die Ontogenie der basiconischen Riechsensillen auf der Antenne des Aaskäfers Necrophorus (Coleoptera). Z Zellforsch 129:217–236CrossRefPubMedGoogle Scholar
  17. Foelix RF (1970a) Structure and function of tarsal sensilla in the spider Araneus diadematus. J ExpZool 175:99–124Google Scholar
  18. Foelix RF (1970b) Chemosensitive hairs in spiders. J Morphol 132:313- 334CrossRefPubMedGoogle Scholar
  19. Foelix RF (1974) Application of the transmission electron microscope to the examination of spider exuviae and silk. Psyche 81:507–509CrossRefGoogle Scholar
  20. Foelix RF (1976) Rezeptoren und periphere synaptische Verschaltungen bei verschiedenen Arachnida. Entomol Germ 3:83 - 87Google Scholar
  21. Foelix RF (1982) Biology of Spiders. Harvard Univ Press, Cambridge, Mass, p 71Google Scholar
  22. Foelix RF, Axtell RC (1971) Fine structure of tarsal sensilla in the tick Amblyomma americanum L. Z Zellforsch 114:22 - 37CrossRefPubMedGoogle Scholar
  23. Foelix RF, Axtell RC (1972) Ultrastructure of Haller’s organ in the tick Amblyomma americanum L. Z Zellforsch 124:275–292CrossRefPubMedGoogle Scholar
  24. Foelix RF, Chu-Wang IW (1972) Fine structural analysis of palpal receptors in the tick Amblyomma americanum L. Z Zellforsch 129: 548 - 560CrossRefPubMedGoogle Scholar
  25. Foelix RF, Chu-Wang IW (1973a) The morphology of spider sensilla. I. Mechanoreceptors. Tissue Cell 5:451–460CrossRefPubMedGoogle Scholar
  26. Foelix RF, Chu-Wang IW (1973b) The morphology of spider sensilla. II. Chemoreceptors. Tissue Cell 5:461–478CrossRefPubMedGoogle Scholar
  27. Foelix RF, Chu-Wang IW (1975) The structure of scopula hairs in spiders. Proc 6th Int Congr Arachnol, Amsterdam, pp 56 - 58Google Scholar
  28. Foelix RF, Miiller-Vorholt G (1983) The fine structure of scorpion sensory organs. II. Pecten sensilla. Bull Br Arachnol Soc 6:68 -74Google Scholar
  29. Foelix RF, Schabronath J (1983) The fine structure of scorpion sensory organs. I. Tarsal sensilla. Bull Br Arachnol Soc 6:53- 67Google Scholar
  30. Foelix RF, Chu-Wang IW, Beck L (1975) Fine structure of tarsal sensory organs in the whip spider Admetus pumilio (Amblypygi, Arachnida). Tissue Cell 7:331- 346CrossRefPubMedGoogle Scholar
  31. Foelix R, Jackson R, Henksmeyer A, Hallas A (1984) Tarsal hairs specialized for prey capture in the salticid Portia. Rev Arachnol 5:329- 334Google Scholar
  32. Forster RR (1980) Evolution of the tarsal organ, the respiratory system and the female genitalia in spiders. Proc 8th Int Congr Arachnol, Vienna, pp 269 - 284Google Scholar
  33. Gaffal KP (1976) Die Feinstruktur der Sinnes- und Hiillzellen in den antennalen Schmecksensillen von Dysdercus intermedius Dist. (Pyrrhocoridae, Heteroptera). Protoplasma 88:101–115CrossRefGoogle Scholar
  34. Gaffal KP, Theiß J (1978) The tibial thread-hairs of Acheta domesticus (L.) (Saltatoria, Gryllidae). The dependence of stimulus transmission and mechanical properties on the anatomical characteristics of the socket apparatus. Zoomorphologie 90:41 - 51CrossRefGoogle Scholar
  35. Gaffal KP, Tichy H, Theiß J, Seelinger G (1975) Structural polarities in mechanosensitive sensilla and their influence on stimulus transmission (Arthropoda). Zoomorphologie 82:79–103CrossRefGoogle Scholar
  36. Gnatzy W, Tautz J (1980) Ultrastructure and mechanical properties of an insect mechanoreceptor: Stimulus-transmitting structures and sensory apparatus of the cercal filiform hairs of Gryllus. Cell Tissue Res 213:441–463PubMedGoogle Scholar
  37. Görner P (1965) A proposed transducing mechanism for a multiply innervated mechanoreceptor (trichobothrium) in spiders. Cold Spring Harb Symp Quant Biol 30:69 -73CrossRefPubMedGoogle Scholar
  38. Harris DJ (1977) Hair regeneration during moulting in the spider Ciniflo similis (Araneae, Dictynidae). Zoomorphologie 88:37 - 63CrossRefGoogle Scholar
  39. Harris DJ, Mill PJ (1973) The ultrastructure of chemoreceptor sensilla in Ciniflo (Araneida, Arachnida). Tissue Cell 5:679–689CrossRefPubMedGoogle Scholar
  40. Harris DJ, Mill PJ (1977 a) Observations on the leg receptors of Ciniflo (Araneida, Dictynidae). 1. External mechanoreceptors. J Comp Physiol 119:37 - 54CrossRefGoogle Scholar
  41. Harris DJ, Mill PJ (1977b) Observations on the leg receptors of Ciniflo (Araneida, Dictynidae). II. Chemoreceptors. J Comp Physiol 119:55–62CrossRefGoogle Scholar
  42. Haupt J (1982) Hair regeneration in a solpugid chemotactile sensillum during moulting (Arachnida: Solifugae). Wilhelm Roux’ Arch Entwicklungsmech Org 191:137–142Google Scholar
  43. Haupt J, Coineau Y (1975) Trichobothrien und Tastborsten der Milbe Microcaeculus (Acari, Prostigmata, Caeculidae). Z Morphol Tiere 81:305 - 322CrossRefGoogle Scholar
  44. Henksmeyer A (1983) Funktionelle Anatomie der hydraulisch aufrichtbaren Haare am Spinnenbein. Examensarbeit, Ruhr-Univ BochumGoogle Scholar
  45. Hess E, Loftus R (1984) Warm and cold receptors of two sensilla on the fore leg tarsi of the tropical bont tick Amblyomma variegatum. J Comp Physiol A 155: 187–195CrossRefGoogle Scholar
  46. Hess E, Vlimant M (1980) Morphology and fine structure of the tick Amblyomma variegatum (Acarina, Ixodidae, Metastriata), including preliminary electrophysiological results. Proc Olfaction and Taste, vol VII, Paris, p 190Google Scholar
  47. Hess E, Vlimant M (1982) The tarsal sensory system of Amblyomma variegatum Fabricius (Ixodidae, Metastriata). I. Wall pore and terminal pore sensilla. Rev Suisse Zool 89:713–729CrossRefGoogle Scholar
  48. Hess E, Vlimant M (1983) The tarsal sensory system of Amblyomma variegatum Fabricius (Ixodidae, Metastriata). II. No pore sensilla. Rev Suisse Zool 90:157 -167CrossRefGoogle Scholar
  49. Hill DE (1977) The pretarsus of salticid spiders. Zool J Linn Soc 60:319- 338CrossRefGoogle Scholar
  50. Homann H (1957) Haften Spinnen an einer Wasserhaut? N aturwissenschaften 44:318 - 319CrossRefGoogle Scholar
  51. Ivanov VP (1981) Sense organs of scorpions. Acad Sci USSR Proc Zool Inst 106:4–33 (in Russian)Google Scholar
  52. Keil T (1978) Die Makrochaeten auf dem Thorax von Calliphora vicina Robineau-Desvoidy (Calliphoridae, Diptera). Zoomorphologie 90:151–180CrossRefGoogle Scholar
  53. Keil T (1982) Contacts of pore tubules and sensory dendrites in antennal chemosensilla of a silkmoth: Demonstration of a possible pathway for olfactory molecules. Tissue Cell 14:451–462CrossRefPubMedGoogle Scholar
  54. Leonovich SA (1977) Electron microscopy of Haller’s organ of the tick Ixodes persulcatus (Ixodidae). Parazitologya 11:340- 347 (in Russian)Google Scholar
  55. Lees AD (1948) The sensory physiology of the sheep tick, Ixodes ricinus L. J Exp Bioi 25:145–207Google Scholar
  56. McIver SB (1975) Structure of cuticular mechanoreceptors of arthropods. Annu Rev Entomol 20:381–397CrossRefPubMedGoogle Scholar
  57. Moran DT, Rowley JC, Zill SN, Varela FG (1976) The mechanism of sensory transduction in a mechanoreceptor. Functional stages in campaniform sensilla during the molting cycle. J Cell Bioi 71:832–847CrossRefGoogle Scholar
  58. Moran DT, Varela FJ, Rowley JC (1977) Evidence for active role of cilia in sensory transduction. Proc Natl Acad Sci USA 74:793–797CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rovner JS (1978) Adhesive hairs in spiders: Behavioral functions and hydraulically mediated movement. Symp Zool Soc London 42:99–108Google Scholar
  60. Sanjeeva-Reddy P (1971) Function of the supernumerary sense cells and the relationship between modality of adequate stimulus and innervation pattern of the scorpion hair sensillum. J Exp Biol 54:233 - 238PubMedGoogle Scholar
  61. Schmidt K, Gnatzy W (1971) Die Feinstruktur der Sinneshaare auf den Cerci von Gryllus bimaculatus Deg. (Saltatoria, Gryllidae). II. Die Hautung der Faden- und Keulenhaare. Z Zellforsch 122:210- 226CrossRefPubMedGoogle Scholar
  62. Sinitzina EE (1974) Electrophysiological reactions of the neurons of the Haller’s organ to the odour stimuli in the tick Hyalomma asiaticum. Parazitologiya 8:223 - 226 (in Russian)Google Scholar
  63. Slifer EH (1970) The structure of arthropod chemoreceptors. Annu Rev Entomol 15:121–142CrossRefGoogle Scholar
  64. Steinbrecht RA (1973) Der Feinbau olfaktorischer Sensillen des Seidenspinners (Insecta, Lepidoptera). Rezeptorfortsatze und reizleitender Apparat. Z Zellforsch 139:533 - 565CrossRefPubMedGoogle Scholar
  65. Steinbrecht RA, Muller B (1976) Fine structure of the antennal receptors of the bed bug, Cimex lectularis L. Tissue Cell 8:615–636CrossRefPubMedGoogle Scholar
  66. Thurm U (1964) Mechanoreceptors in the cuticle of the honey bee: Fine structure and stimulus mechanism. Science 145:1063–1065CrossRefPubMedGoogle Scholar
  67. Thurm U (1965) An insect mechanoreceptor, part I. Fine structure and adequate stimulus.Cold Spring Harbor Symp Quant Bioi 30:75 - 82CrossRefGoogle Scholar
  68. Thurm U (1982) Biophysik der Mechanorezeption. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik, 2nd edn. Springer, Berlin Heidelberg New York, pp 691–696Google Scholar
  69. Tietjen WJ (1979) Is the sex pheromone of Lycosa rabida (Araneae, Lycosidae) deposited on a substratum? J Arachnol 6:207 - 212Google Scholar
  70. Tietjen WJ, Rovner JS (1980) Physico-chemical trail-following behaviour in two species of wolf spiders: sensory and eco-ethological concomitants. Anim Behav 28:735 -741CrossRefGoogle Scholar
  71. Tietjen WJ, Rovner JS (1982) Chemical communication in lycosids and other spiders. In: Witt PN, Rovner JS (eds) Spider communication, mechanism and ecological significance. Princeton Univ Press, Princeton, NJGoogle Scholar
  72. Weygoldt P (1977) Communication in crustaceans and arachnids. In: Sebeok TA (ed) How animals communicate. Indiana Univ Press, Bloomington, Indiana, pp 303–333Google Scholar
  73. Zacharuk RY (1980) Ultrastructure and function of insect chemosensilla. Annu Rev Entomol 25:27–47CrossRefGoogle Scholar
  74. Zimmermann W (1975) Biologische und rasterelektronenmikroskopische Feststellungen an Oecobiinae, Uroecobiinae und Urocteinae. Dissertation, Univ BonnGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • R. F. Foelix
    • 1
  1. 1.Institut d’AnatomieUniversité de FribourgFribourgSwitzerland

Personalised recommendations