Skip to main content

Photoreceptor Cells in the Spider Eye: Spectral Sensitivity and Efferent Control

  • Chapter
Neurobiology of Arachnids

Abstract

Most species of spiders have four pairs of simple eyes arranged in two rows, anterior and posterior, in the frontal part on the prosoma. These eyes are referred to as the anterior median, anterior lateral, posterior median, and posterior lateral eyes. The anterior median eyes are generally referred to as principal eyes and the other three pairs as secondary eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barlow RB Jr, Bolanowski SJ Jr, Brachman ML (1977) Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197:86–89

    Article  PubMed  Google Scholar 

  • Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127

    Article  CAS  PubMed  Google Scholar 

  • Blest AD, Hardie RC, McIntyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol 145:227–239

    Article  Google Scholar 

  • Chamberlain SC, Barlow RB Jr (1977) Morphological correlates of efferent circadian activity and light adaptation in the Limulus lateral eye. Biol Bull 153:418–419

    Google Scholar 

  • Crane J (1949) Comparative biology of salticid spiders at Rancho Grande, Venezuela. Part IV. An analysis of display. Zoologica 34:159–214

    Google Scholar 

  • DeVoe RD (1962) Linear superposition of retinal action potentials to predict electrical flicker responses from the eye of the wolf spider, Lycosa baltimoriana (Keyserling) J Gen Physiol 46:75–96

    Article  CAS  PubMed Central  Google Scholar 

  • DeVoe RD (1967a) Nonlinear transient responses from light-adapted wolf spider eyes to changes in background illumination. J Gen Physiol 50:1961–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVoe RD (1967b) A nonlinear model for transient responses from light-adapted wolf spider eyes. J Gen Physiol 50:1993–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVoe RD (1972) Dual sensitivities of cells in wolf spider eyes at ultraviolet and visible wavelengths of light. J Gen Physiol 59:247–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVoe RD (1975) Ultraviolet and green receptors in principal eyes of jumping spiders. J Gen Physiol 66:193–207

    Article  CAS  Google Scholar 

  • DeVoe RD, Small RJW, Zvargulis JE (1969) Spectral sensitivities of wolf spider eyes. J Gen Physiol 54:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duelli P (1978) Movement detection in the posterolateral eyes of jumping spiders (Evarcha arcuata, Salticidae). J Comp Physiol 124:15–26

    Article  Google Scholar 

  • Fahrenbach WH (1969) The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z Zellforsch 93:451–483

    Article  CAS  PubMed  Google Scholar 

  • Fahrenbach WH (1973) The morphology of the Limulus visual system. V. Protocerebral neurosecretion and ocular innervation. Z Zellforsch 144:153–166

    Article  Google Scholar 

  • Fleissner G, Fleissner G (1978) The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion. Comp Biochem Physiol (A) 61:69–71

    Article  Google Scholar 

  • Fleissner G, Heinrichs S (1982) Neurosecretory cells in the circadian-clock system of the scorpion, Androctonus australis. Cell Tissue Res 224:233–238

    Article  CAS  PubMed  Google Scholar 

  • Fleissner G, Schliwa M (1977) Neurosecretory fibers in the median eyes of the scorpion, Androctonus australis L. Cell Tissue Res 178:189–198

    Article  CAS  PubMed  Google Scholar 

  • Gwilliam GF (1963) The mechanism of the shadow reflex in Cirripedia. I. Electrical activity in the supraesophageal ganglion and ocellar nerve. Biol Bull 125:470–485

    Article  Google Scholar 

  • Gwilliam GF (1965) The mechanism of the shadow reflex in Cirripedia. II. Photoreceptor cell response, second-order responses, and motor cell output. Biol Bull 129:244–256

    Article  Google Scholar 

  • Gwilliam GF (1976) The mechanism of the shadow reflex in Cirripedia. III. Rhythmical patterned activity in central neurons and its modulation by shadows. Biol Bull 151:141–160

    Article  Google Scholar 

  • Hardie RC, Duelli P (1978) Properties of single cells in posterior lateral eyes of jumping spiders. Z Naturforsch 33c: 156–158

    Google Scholar 

  • Homann H (1928) Beiträge zur Physiologie der Spinnenaugen. I. Untersuchungsmethoden. II. Das Sehvermögen der Salticiden. Z Vergl Physiol 7:201–268

    Article  Google Scholar 

  • Horridge GA, Marčelja L, Jahnke R, Matič T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol 150:271–294

    Article  Google Scholar 

  • Kaplan E, Barlow RB Jr (1980) Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature (London) 286:393–395

    Article  CAS  Google Scholar 

  • Kästner A (1950) Reaktionen der Hüpfspinnen (Salticidae) auf unbewegte farblose und farbige Gesichtsreize. Zool Beitr 1:12–50

    Google Scholar 

  • Kennedy D (1960) Neural photoreception in a lamellibranch mollusc. J Gen Physiol 44:277–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land MF (1969) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470

    CAS  PubMed  Google Scholar 

  • Land MF (1971) Orientation by jumping spiders in the absence of visual feedback. J Exp Biol 54:119–139

    CAS  PubMed  Google Scholar 

  • Laughlin S, Blest AD, Stowe S (1980) The sensitivity of receptors in the posterior median eye of the nocturnal spider, Dinopis. J Comp Physiol 141:53–65

    Article  Google Scholar 

  • Matič T (1983) Electrical inhibition in the retina of the butterfly Papilio. I. Four spectral types of photoreceptors. J Comp Physiol 152:169–182

    Article  Google Scholar 

  • Meinertzhagen IA, Menzel R, Kahle G (1983) The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rubicundulum. J Comp Physiol 151:295–310

    Article  Google Scholar 

  • Melamed J, Trujillo-Cenóz O (1966) The fine structure of the visual system of Lycosa (Araneae: Lycosidae). Part I. Retina and optic nerve. Z Zellforsch 74:12–31

    Article  CAS  PubMed  Google Scholar 

  • Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Handbook of sensory physiology, vol VII, 6A. Springer, Berlin Heidelberg New York, pp 503–580

    Chapter  Google Scholar 

  • Oertel D, Stuart AE (1981) Transformation of signals by intemeurons in the barnacle’s visual pathway. J Physiol (London) 311:127–146

    Article  CAS  Google Scholar 

  • Peckham GW, Peckham EG (1894) The sense of sight in spiders with some observations of the color sense. Trans Wiss Acad Sci Arts Lett 10:231–261

    Google Scholar 

  • Stuart AE, Oertel D (1978) Neuronal properties underlying processing of visual information in the barnacle. Nature (London) 275:287–290

    Article  CAS  Google Scholar 

  • Weakly JN (1973) The action of cobalt ions on neuromuscular transmission in the frog. J Physiol (London) 234:597–612

    Article  CAS  Google Scholar 

  • Yamashita S, Tateda H (1976a) Spectral sensitivities of jumping spider eyes. J Comp Physiol 105:29–41

    Article  Google Scholar 

  • Yamashita S, Tateda H (1976b) Hypersensitivity in the anterior median eye of a jumping spider. J Exp Biol 65:507–516

    CAS  PubMed  Google Scholar 

  • Yamashita S, Tateda H (1978) Spectral sensitivities of the anterior median eyes of the orb web spiders, Argiope bruennichii and A. amoena. J Exp Biol 74:47–57

    Google Scholar 

  • Yamashita S, Tateda H (1981) Efferent neural control in the eyes of orb weaving spiders. J Comp Physiol 143:477–483

    Article  Google Scholar 

  • Yamashita S, Tateda H (1982) Importance of calcium and magnesium ions for postexcitatory hypersensitivity in the jumping spider (Menemerus) eye. J Exp Biol 97:187–195

    CAS  Google Scholar 

  • Yamashita S, Tateda H (1983) Cerebral photosensitive neurons in the orb weaving spiders, Argiope bruennichii and A. amoena. J Comp Physiol 150:467–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin, Heidelberg

About this chapter

Cite this chapter

Yamashita, S. (1985). Photoreceptor Cells in the Spider Eye: Spectral Sensitivity and Efferent Control. In: Barth, F.G. (eds) Neurobiology of Arachnids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-70348-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-70348-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-70350-8

  • Online ISBN: 978-3-642-70348-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics