Photoreceptor Cells in the Spider Eye: Spectral Sensitivity and Efferent Control

  • Shigeki Yamashita


Most species of spiders have four pairs of simple eyes arranged in two rows, anterior and posterior, in the frontal part on the prosoma. These eyes are referred to as the anterior median, anterior lateral, posterior median, and posterior lateral eyes. The anterior median eyes are generally referred to as principal eyes and the other three pairs as secondary eyes.


Optic Nerve Spectral Sensitivity Green Cell Sensitive State Constant Darkness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barlow RB Jr, Bolanowski SJ Jr, Brachman ML (1977) Efferent optic nerve fibers mediate circadian rhythms in the Limulus eye. Science 197:86–89CrossRefPubMedGoogle Scholar
  2. Bernard GD (1979) Red-absorbing visual pigment of butterflies. Science 203:1125–1127CrossRefPubMedGoogle Scholar
  3. Blest AD, Hardie RC, McIntyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol 145:227–239CrossRefGoogle Scholar
  4. Chamberlain SC, Barlow RB Jr (1977) Morphological correlates of efferent circadian activity and light adaptation in the Limulus lateral eye. Biol Bull 153:418–419Google Scholar
  5. Crane J (1949) Comparative biology of salticid spiders at Rancho Grande, Venezuela. Part IV. An analysis of display. Zoologica 34:159–214Google Scholar
  6. DeVoe RD (1962) Linear superposition of retinal action potentials to predict electrical flicker responses from the eye of the wolf spider, Lycosa baltimoriana (Keyserling) J Gen Physiol 46:75–96CrossRefPubMedCentralGoogle Scholar
  7. DeVoe RD (1967a) Nonlinear transient responses from light-adapted wolf spider eyes to changes in background illumination. J Gen Physiol 50:1961–1991CrossRefPubMedPubMedCentralGoogle Scholar
  8. DeVoe RD (1967b) A nonlinear model for transient responses from light-adapted wolf spider eyes. J Gen Physiol 50:1993–2030CrossRefPubMedPubMedCentralGoogle Scholar
  9. DeVoe RD (1972) Dual sensitivities of cells in wolf spider eyes at ultraviolet and visible wavelengths of light. J Gen Physiol 59:247–269CrossRefPubMedPubMedCentralGoogle Scholar
  10. DeVoe RD (1975) Ultraviolet and green receptors in principal eyes of jumping spiders. J Gen Physiol 66:193–207CrossRefGoogle Scholar
  11. DeVoe RD, Small RJW, Zvargulis JE (1969) Spectral sensitivities of wolf spider eyes. J Gen Physiol 54:1–32CrossRefPubMedPubMedCentralGoogle Scholar
  12. Duelli P (1978) Movement detection in the posterolateral eyes of jumping spiders (Evarcha arcuata, Salticidae). J Comp Physiol 124:15–26CrossRefGoogle Scholar
  13. Fahrenbach WH (1969) The morphology of the eyes of Limulus. II. Ommatidia of the compound eye. Z Zellforsch 93:451–483CrossRefPubMedGoogle Scholar
  14. Fahrenbach WH (1973) The morphology of the Limulus visual system. V. Protocerebral neurosecretion and ocular innervation. Z Zellforsch 144:153–166CrossRefGoogle Scholar
  15. Fleissner G, Fleissner G (1978) The optic nerve mediates the circadian pigment migration in the median eyes of the scorpion. Comp Biochem Physiol (A) 61:69–71CrossRefGoogle Scholar
  16. Fleissner G, Heinrichs S (1982) Neurosecretory cells in the circadian-clock system of the scorpion, Androctonus australis. Cell Tissue Res 224:233–238CrossRefPubMedGoogle Scholar
  17. Fleissner G, Schliwa M (1977) Neurosecretory fibers in the median eyes of the scorpion, Androctonus australis L. Cell Tissue Res 178:189–198CrossRefPubMedGoogle Scholar
  18. Gwilliam GF (1963) The mechanism of the shadow reflex in Cirripedia. I. Electrical activity in the supraesophageal ganglion and ocellar nerve. Biol Bull 125:470–485CrossRefGoogle Scholar
  19. Gwilliam GF (1965) The mechanism of the shadow reflex in Cirripedia. II. Photoreceptor cell response, second-order responses, and motor cell output. Biol Bull 129:244–256CrossRefGoogle Scholar
  20. Gwilliam GF (1976) The mechanism of the shadow reflex in Cirripedia. III. Rhythmical patterned activity in central neurons and its modulation by shadows. Biol Bull 151:141–160CrossRefGoogle Scholar
  21. Hardie RC, Duelli P (1978) Properties of single cells in posterior lateral eyes of jumping spiders. Z Naturforsch 33c: 156–158Google Scholar
  22. Homann H (1928) Beiträge zur Physiologie der Spinnenaugen. I. Untersuchungsmethoden. II. Das Sehvermögen der Salticiden. Z Vergl Physiol 7:201–268CrossRefGoogle Scholar
  23. Horridge GA, Marčelja L, Jahnke R, Matič T (1983) Single electrode studies on the retina of the butterfly Papilio. J Comp Physiol 150:271–294CrossRefGoogle Scholar
  24. Kaplan E, Barlow RB Jr (1980) Circadian clock in Limulus brain increases response and decreases noise of retinal photoreceptors. Nature (London) 286:393–395CrossRefGoogle Scholar
  25. Kästner A (1950) Reaktionen der Hüpfspinnen (Salticidae) auf unbewegte farblose und farbige Gesichtsreize. Zool Beitr 1:12–50Google Scholar
  26. Kennedy D (1960) Neural photoreception in a lamellibranch mollusc. J Gen Physiol 44:277–299CrossRefPubMedPubMedCentralGoogle Scholar
  27. Land MF (1969) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470PubMedGoogle Scholar
  28. Land MF (1971) Orientation by jumping spiders in the absence of visual feedback. J Exp Biol 54:119–139PubMedGoogle Scholar
  29. Laughlin S, Blest AD, Stowe S (1980) The sensitivity of receptors in the posterior median eye of the nocturnal spider, Dinopis. J Comp Physiol 141:53–65CrossRefGoogle Scholar
  30. Matič T (1983) Electrical inhibition in the retina of the butterfly Papilio. I. Four spectral types of photoreceptors. J Comp Physiol 152:169–182CrossRefGoogle Scholar
  31. Meinertzhagen IA, Menzel R, Kahle G (1983) The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rubicundulum. J Comp Physiol 151:295–310CrossRefGoogle Scholar
  32. Melamed J, Trujillo-Cenóz O (1966) The fine structure of the visual system of Lycosa (Araneae: Lycosidae). Part I. Retina and optic nerve. Z Zellforsch 74:12–31CrossRefPubMedGoogle Scholar
  33. Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Comparative physiology and evolution of vision in invertebrates. Handbook of sensory physiology, vol VII, 6A. Springer, Berlin Heidelberg New York, pp 503–580CrossRefGoogle Scholar
  34. Oertel D, Stuart AE (1981) Transformation of signals by intemeurons in the barnacle’s visual pathway. J Physiol (London) 311:127–146CrossRefGoogle Scholar
  35. Peckham GW, Peckham EG (1894) The sense of sight in spiders with some observations of the color sense. Trans Wiss Acad Sci Arts Lett 10:231–261Google Scholar
  36. Stuart AE, Oertel D (1978) Neuronal properties underlying processing of visual information in the barnacle. Nature (London) 275:287–290CrossRefGoogle Scholar
  37. Weakly JN (1973) The action of cobalt ions on neuromuscular transmission in the frog. J Physiol (London) 234:597–612CrossRefGoogle Scholar
  38. Yamashita S, Tateda H (1976a) Spectral sensitivities of jumping spider eyes. J Comp Physiol 105:29–41CrossRefGoogle Scholar
  39. Yamashita S, Tateda H (1976b) Hypersensitivity in the anterior median eye of a jumping spider. J Exp Biol 65:507–516PubMedGoogle Scholar
  40. Yamashita S, Tateda H (1978) Spectral sensitivities of the anterior median eyes of the orb web spiders, Argiope bruennichii and A. amoena. J Exp Biol 74:47–57Google Scholar
  41. Yamashita S, Tateda H (1981) Efferent neural control in the eyes of orb weaving spiders. J Comp Physiol 143:477–483CrossRefGoogle Scholar
  42. Yamashita S, Tateda H (1982) Importance of calcium and magnesium ions for postexcitatory hypersensitivity in the jumping spider (Menemerus) eye. J Exp Biol 97:187–195Google Scholar
  43. Yamashita S, Tateda H (1983) Cerebral photosensitive neurons in the orb weaving spiders, Argiope bruennichii and A. amoena. J Comp Physiol 150:467–472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • Shigeki Yamashita
    • 1
  1. 1.Biological LaboratoryKyushu Institute of DesignShiobaru, Fukuoka 815Japan

Personalised recommendations