Advertisement

The Fine Structure of Spider Photoreceptors in Relation to Function

  • A. David Blest
Chapter

Abstract

The eyes of spiders are ocelli, and it is natural to compare their performance with that of compound eyes and of the ocelli of insects. The latter, which are underfocused and usually possess receptor mosaics of indifferent quality (Wilson 1978), are better known than those of arachnids, and have not encouraged workers to examine those of spiders in much detail. Nevertheless, the ocelli of spiders range from the principal eyes of jumping spiders whose sophisticated organisation sustains high visual acuities (Land 1969a; Eakin and Brandenburger 1971; Jackson and Blest 1982a; Blest and Price 1984) to many, perhaps the majority, that can hardly be supposed to sustain much in the way of image analysis at all.

Keywords

Pigment Granule High Visual Acuity Photoreceptor Membrane Receptor Mosaic Corneal Lens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin AD, Blest AD (1979) The biology of two species of Australian dinopid spider. J Zool (London) 189:145–156CrossRefGoogle Scholar
  2. Bacetti B, Bedini C (1964) Research on the structure and physiology of eyes of a lycosid spider. I. Microscopic and ultramicroscopic structure. Arch Ital Biol 102:97–122Google Scholar
  3. Barlow RB, Bolanowski SJ, Brachman ML (1977) Efferent optic nerve fibres mediate circadian rhythms in the Limulus eye. Science 197:86–89CrossRefPubMedGoogle Scholar
  4. Blest AD (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider. Proc R Soc London Ser B 200:463–483CrossRefGoogle Scholar
  5. Blest AD (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implications. In: Williams TP, Baker BN (eds) The effects of constant light on visual processes. Plenum Press, New York, pp 217–245CrossRefGoogle Scholar
  6. Blest AD (1983) Ultrastructure of secondary retinae of primitive and advanced jumping spiders (Araneae, Salticidae). Zoomorphology 102:125–141CrossRefGoogle Scholar
  7. Blest AD (1984) Ultrastructure of the secondary eyes of a primitive jumping spider, Yaginumanis (Araneae, Salticidae, Spartaeinae). Zoomorphology 104:223–225CrossRefGoogle Scholar
  8. Blest AD, Day WA (1978) The rhabdomere organisation of some nocturnal pisaurid spiders in light and darkness. Philos Trans R Soc London Ser B 283:1–23CrossRefGoogle Scholar
  9. Blest AD, De Couet HG, Sigmund C (1983) The microvillar cytoskeleton of leech photoreceptors: a stable bundle of actin microfïlaments. Cell Tissue Res 234:9–16CrossRefPubMedGoogle Scholar
  10. Blest AD, Eddey W (1984) The extrarhabdomeral cytoskeleton in photoreceptors of Diptera: II. Plasmalemmal undercoats. Proc R Soc London Ser B 220:353–359CrossRefGoogle Scholar
  11. Blest AD, Hardie RC, McIntyre P, Williams DS (1981) The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. J Comp Physiol 145:227–239CrossRefGoogle Scholar
  12. Blest AD, Kao L, Powell K (1978) Photoreceptor membrane breakdown in the spider Dinopis: the fate of rhabdomere products. Cell Tissue Res 195:425–444PubMedGoogle Scholar
  13. Blest AD, Land MF (1977) The physiological optics of Dinopis subrufus: a fish lens in a spider. Proc R Soc London Ser B 196:197–222CrossRefGoogle Scholar
  14. Blest AD, Maples J (1979) Exocytotic shedding and glial uptake of photoreceptor membrane by a salticid spider. Proc R Soc London Ser B 204:105–112CrossRefGoogle Scholar
  15. Blest AD, Powell K, Kao L (1978) Photoreceptor membrane breakdown in the spider Dinopis: GERL differentiation in the intermediate segments. Cell Tissue Res 195:277–297PubMedGoogle Scholar
  16. Blest AD, Price GD (1984) Retinal mosaics of the principal eyes of some jumping spiders (Salticidae: Araneae): adaptations for high visual acuity. Protoplasma 120:172–184CrossRefGoogle Scholar
  17. Blest AD, Price GD, Maples J (1979) Photoreceptor membrane breakdown in the spider Dinopis: localisation of acid phosphatases. Cell Tissue Res 199:455–472CrossRefPubMedGoogle Scholar
  18. Blest AD, Sigmund C (1984) Retinal mosaics of two primitive jumping spiders, Yaginumanis and Lyssomanes (Araneae, Salticidae): clues to the evolution of Salticid vision. Proc R Soc London Ser B 221:111–125CrossRefGoogle Scholar
  19. Blest AD, Sigmund C (1985) Retinal mosaics of a primitive jumping spider, Spartaeus (Araneae: Salticidae: Spartaeinae): a phylogenetic transition between high and low visual acuities. Protoplasma (in press)Google Scholar
  20. Blest AD, Stowe S, De Couet HG (1984) Turnover of photoreceptor membranes in arthropods. Science Prog, Oxford 69:83–100Google Scholar
  21. Blest AD, Stowe S, Eddey W (1982) A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res 223:553–573CrossRefPubMedGoogle Scholar
  22. Blest AD, Stowe S, Eddey W, Williams DS (1982) The local deletion of a microvillar cytoskeleton from photoreceptors of tipulid flies during membrane turnover. Proc R Soc London Ser B 215:469–479CrossRefGoogle Scholar
  23. Blest AD, Williams DS, Kao L (1980) The posterior median eyes of the dinopid spider Menneus. Cell Tissue Res 211:391–403CrossRefPubMedGoogle Scholar
  24. Chamberlain SC, Barlow RB (1979) Light and efferent activity control rhabdom turnover in Limulus photoreceptors. Science 206:361–363CrossRefPubMedGoogle Scholar
  25. De Couet HG, Blest AD (1982) The retinal acid phosphatase of a crab, Leptograpsus: characterisation, and relation to the cyclical turnover of photoreceptor membrane. J Comp Physiol 149:353–362CrossRefGoogle Scholar
  26. De Couet HG, Stowe S, Blest AD (1984) Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors. J Cell Biol 98:834–846CrossRefPubMedGoogle Scholar
  27. DeVoe RD (1975) Ultraviolet and green receptors in principal eyes of jumping spiders. J Gen Physiol 66:193–208CrossRefGoogle Scholar
  28. Eakin RW, Brandenburger JL (1971) Fine structure of the eyes of jumping spiders. J Ultrastruct Res 37:618–663CrossRefPubMedGoogle Scholar
  29. Eguchi E, Waterman TH (1967) Changes in retina fine structure induced in the crab Libinia by light and dark adaptation. Z Zellforsch 79:202–229Google Scholar
  30. Eguchi E, Waterman TH (1976) Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell Tissue Res 169:419–434CrossRefPubMedGoogle Scholar
  31. Fleissner G, Schliwa M (1977) Neurosecretory fibres in the median eyes of the scorpion, Androctonus australis L. Cell Tissue Res 178:189–198CrossRefPubMedGoogle Scholar
  32. Hardie RC, Duelli P (1978) Properties of single cells in posterior lateral eyes of jumping spiders. Z Naturforsch 33c: 156–158Google Scholar
  33. Homann H (1951) Die Nebenaugen der Araneen. Zool Jahrb Anat 71:56–144Google Scholar
  34. Homann H (1971) Die Augen der Araneae. Z Morph Tiere 69:201–272CrossRefGoogle Scholar
  35. Jackson RR, Blest AD (1982a) The distances at which a primitive jumping spider makes visual discriminations. J Exp Biol 97:441–445Google Scholar
  36. Jackson RR, Blest AD (1982b) The biology of Portia fimbriata, a web-building jumping spider (Araneae: Salticidae) from Queensland: utilisation of webs and predatory versatility. J Zool (London) 196:255–293CrossRefGoogle Scholar
  37. Kirschfeld K, Franceschini N (1969) Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca. Kybernetik 6:13–22CrossRefPubMedGoogle Scholar
  38. Land MF (1969a) Structure of the retinae of the eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470PubMedGoogle Scholar
  39. Land MF (1969b) Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. J Exp Biol 51:471–493PubMedGoogle Scholar
  40. Land MF (1980) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592Google Scholar
  41. Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol 154:515–533CrossRefGoogle Scholar
  42. Laughlin SB (1980) Neural principles in the visual system. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 133–280Google Scholar
  43. Laughlin SB, Blest AD, Stowe S (1980) The sensitivity of receptors in the posterior median eye of the nocturnal spider Dinopis. J Comp Physiol 141:53–66CrossRefGoogle Scholar
  44. Melamed J, Trujillo-Cenóz O (1966) On the fine structure of the visual system of Lycosa (Araneae, Lycosidae). I. Retina and optic nerve. Z Zellforsch Anat 74:12–31CrossRefGoogle Scholar
  45. Nassel DR, Waterman TH (1979) Massive, diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J Comp Physiol 131:205–216CrossRefGoogle Scholar
  46. Schinz RH, Lo M-V, Larrivee DC, Pak W (1982) Freeze-fracture study of the Drosophila photoreceptor membrane. J Cell Biol 93:961–969CrossRefPubMedGoogle Scholar
  47. Snyder AW (1979) The physics of vision in compound eyes. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6 A. Springer, Berlin Heidelberg New York, pp 225–313Google Scholar
  48. Stowe S (1980) Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tissue Res 211:419–440CrossRefPubMedGoogle Scholar
  49. Stowe S (1981) Effects of illumination changes on rhabdom synthesis in a crab. J Comp Physiol 142:19–25CrossRefGoogle Scholar
  50. Tsacopoulos M, Orkand RK, Coles JA, Levy S, Poitry S (1983) Oxygen uptake occurs faster than sodium pumping in bee retina after a light flash. Nature (London) 301:604–606CrossRefGoogle Scholar
  51. Uehara A, Toh Y, Tateda H (1978) Fine structure of the eyes of orb-weavers, Argiope amoena L. Koch (Araneae: Argiopidae). 2. The anterolateral, posterolateral and posteromedial eyes. Cell Tissue Res 186:435–452CrossRefPubMedGoogle Scholar
  52. Wanless FR (1984) A review of the spider subfamily Spartaeinae nom. nov. (Araneae: Salticidae) with descriptions of six new genera. Bull Br Nat Hist (Zool) 46 (2): 135–205Google Scholar
  53. White RH (1968) The effect of light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J Exp Zool 166:405–425CrossRefGoogle Scholar
  54. White RH, Lord E (1975) Diminution and enlargement of the mosquito rhabdom in light and darkness. J Gen Physiol 65:583–598CrossRefPubMedGoogle Scholar
  55. Widmann E (1908) Über den feineren Bau der Augen einiger Spinnen. Z Wiss Zool 90:258–312Google Scholar
  56. Williams DS (1979) The physiological optics of a nocturnal, semi-aquatic spider, Dolomedes aquaticus (Pisauridae). Naturforscher 34c:463–469Google Scholar
  57. Williams DS (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res 225:595–617CrossRefPubMedGoogle Scholar
  58. Williams DS (1983) Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts. J Comp Physiol 150:509–515CrossRefGoogle Scholar
  59. Williams DS, McIntyre P (1980) The principal eyes of a jumping spider have a telephoto component. Nature (London) 288:578–580CrossRefGoogle Scholar
  60. Wilson M (1978) The functional organisation of locust ocelli. J Comp Physiol 124:297–316CrossRefGoogle Scholar
  61. Whittle AC (1976) Reticular specialisations in photoreceptors: a review. Zool Scr 5:191–206CrossRefGoogle Scholar
  62. Yamashita S, Tateda H (1976) Spectral sensitivities of jumping spider eyes. J Comp Physiol 105:1–8CrossRefGoogle Scholar
  63. Yamashita S, Tateda H (1981) Efferent neural control in the eyes of orb-weaving spiders. J Comp Physiol 143:477–483CrossRefGoogle Scholar
  64. Yamashita S, Tateda H (1983) Cerebral photosensitive neurons in the orb-weaving spiders, Argiope bruennichii and A. amoena. J Comp Physiol 150:467–462CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin, Heidelberg 1985

Authors and Affiliations

  • A. David Blest
    • 1
  1. 1.Department of NeurobiologyResearch School of Biological Sciences, The Australian National UniversityCanberraAustralia

Personalised recommendations